This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A272159 #17 Feb 16 2025 08:33:33 %S A272159 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25, %T A272159 26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48, %U A272159 49,50,51,52,53,54,55,56,57,58,59,60,61,64,65,66,67,71 %N A272159 Numbers k such that abs(8*k^2 - 488*k + 7243) is prime. %C A272159 From _Robert Israel_, Apr 21 2016: (Start) %C A272159 n such that either n <= 61 or 8n^2 - 488n + 7243 is prime. %C A272159 The first number not in the sequence is 62. (End) %H A272159 Robert Israel, <a href="/A272159/b272159.txt">Table of n, a(n) for n = 1..10000</a> %H A272159 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Prime-GeneratingPolynomial.html">Prime-Generating Polynomials</a> %e A272159 4 is in this sequence since 8*4^2 - 488*4 + 7243 = 128-1952+7243 = 5419 is prime. %p A272159 select(n -> isprime(abs(8*n^2 - 488*n + 7243)), [$0..1000]); # _Robert Israel_, Apr 21 2016 %t A272159 Select[Range[0, 100], PrimeQ[8#^2 - 488# + 7243] &] %o A272159 (PARI) lista(nn) = for(n=0, nn, if(isprime(abs(8*n^2-488*n+7243)), print1(n, ", "))); \\ _Altug Alkan_, Apr 21 2016 %Y A272159 Cf. A050268, A050267, A005846, A007641, A007635, A048988, A050265, A050266. %Y A272159 Cf. A271980, A272074, A272075, A272160. %K A272159 nonn %O A272159 1,3 %A A272159 _Robert Price_, Apr 21 2016