cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272178 Absolute value of alternating row sum of row 2n in A238498.

This page as a plain text file.
%I A272178 #11 Mar 15 2020 05:10:25
%S A272178 1,1,2,10,54,322,1294,4526,20782,93814,371110,1780294,6733918,
%T A272178 22513642,92018398,461754862,1297077342,5790726826,32850248974,
%U A272178 94597335398,454725608974,2080853077822,6173935052878,29922219241486,116844904688830,448338212337298,1975870364475334
%N A272178 Absolute value of alternating row sum of row 2n in A238498.
%C A272178 The alternating row sums of the odd-indexed rows are 0.
%H A272178 Tom Edgar, <a href="http://www.emis.de/journals/INTEGERS/papers/o62/o62.Abstract.html">Totienomial Coefficients</a>, INTEGERS, 14 (2014), #A62.
%F A272178 For n>0, a(n) = Sum_{k=0..2n}(-1)^(k+1)*A238498(2n,k).
%o A272178 (Sage)
%o A272178 P=[0]+[i*prod([(1+1/x) for x in prime_divisors(i)]) for i in [1..100]]
%o A272178 Tr=[[prod(P[1:n+1])/(prod(P[1:k+1])*prod(P[1:(n-k)+1])) for k in [0..n]] for n in [0..len(P)-1]]
%o A272178 L=[sum((-1)^(i)*x[i] for i in [0..len(x)-1]) for x in Tr]
%o A272178 [abs(y) for y in L if y!=0]
%Y A272178 Cf. A001615, A238498, A272080.
%K A272178 nonn
%O A272178 0,3
%A A272178 _Tom Edgar_, Apr 21 2016