cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272186 Numbers n such that Bernoulli number B_{n} has denominator 690.

This page as a plain text file.
%I A272186 #14 Apr 29 2016 09:27:40
%S A272186 44,484,748,2596,2684,3124,4444,4708,6556,6908,7964,8228,9812,9988,
%T A272186 11308,11572,11836,11924,12452,13684,13772,13948,14828,15356,15532,
%U A272186 16148,16676,16852,17468,17644,18524,19316,19756,20108,20284,20372,21076,22924,23012,24068,24772,25124,25828,26444
%N A272186 Numbers n such that Bernoulli number B_{n} has denominator 690.
%C A272186 690 = 2 * 3 * 5 * 23.
%C A272186 All terms are multiple of a(1) = 44.
%C A272186 For these numbers Numerator(B_{n}) mod Denominator(B_{n}) = 637.
%H A272186 Seiichi Manyama, <a href="/A272186/b272186.txt">Table of n, a(n) for n = 1..1000</a>
%e A272186 Bernoulli B_{44} is -27833269579301024235023/690, hence 44 is in the sequence.
%p A272186 with(numtheory): P:=proc(q,h) local n;  for n from 2 by 2 to q do
%p A272186 if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6,690);
%o A272186 (PARI) isok(n) = denominator(bernfrac(n)) == 690; \\ _Michel Marcus_, Apr 22 2016
%Y A272186 Cf. A045979, A051222, A051225, A051226, A051227, A051228, A051229, A051230, A119456, A119480, A249134, A255684, A271634, A271635, A272138, A272139, A272140, A272183, A272184, A272185.
%K A272186 nonn
%O A272186 1,1
%A A272186 _Paolo P. Lava_, Apr 22 2016
%E A272186 a(9)-a(14) from _Michel Marcus_, Apr 22 2016
%E A272186 More terms from _Altug Alkan_, Apr 22 2016