A272193 Numbers k such that (73*10^k + 143)/9 is prime.
1, 2, 5, 7, 13, 16, 17, 25, 44, 52, 197, 233, 241, 389, 838, 856, 2252, 2945, 5207, 8020, 10708, 14663, 16885, 20366, 20450, 24121, 24437, 29348, 134939
Offset: 1
Examples
5 is in this sequence because (73*10^5 + 143)/9 = 811127 is prime. Initial terms and associated primes: a(1) = 1, 97; a(2) = 2, 827;; a(3) = 5, 811127; a(4) = 7, 81111127; a(5) = 13, 81111111111127, etc.
Links
- Makoto Kamada, Factorization of near-repdigit-related numbers.
- Makoto Kamada, Search for 81w27.
Programs
-
Mathematica
Select[Range[0, 100000], PrimeQ[(73*10^# + 143)/9] &]
-
PARI
lista(nn) = for(n=1, nn, if(ispseudoprime((73*10^n + 143)/9), print1(n, ", "))); \\ Altug Alkan, Apr 22 2016
Extensions
a(29) from Robert Price, Jul 31 2019
Comments