A272196 Number of solutions of the congruence y^2 == x^3 - 4*x^2 + 16 (mod p) as p runs through the primes.
2, 4, 4, 9, 10, 9, 19, 19, 24, 29, 24, 34, 49, 49, 39, 59, 54, 49, 74, 74, 69, 89, 89, 74, 104, 99, 119, 89, 99, 104, 119, 149, 144, 129, 159, 149, 164, 159, 179, 179, 194, 174, 174, 189, 199, 199, 199, 204, 209, 214, 209, 269, 249, 274, 259, 249, 259, 299, 279, 299
Offset: 1
Examples
The first nonnegative complete residue system {0, 1, ..., prime(n)-1} is used. The solutions (x, y) of y^2 == x^3 - 4*x^2 + 16 (mod prime(n)) begin: n, prime(n), a(n)\ solutions (x, y) 1, 2, 2: (0, 0), (1, 1) 2, 3, 4: (0, 1), (0, 2), (1, 1), (1, 2) 3, 5, 4: (0, 1), (0, 4), (4, 1), (4, 4) 4, 7, 9: (0, 3), (0, 4), (2, 1), (2, 6), (4, 3), (4, 4), (6, 2), (6, 5) 5, 11, 10: (0, 4), (0, 7), (4, 4), (4, 7), (6, 0), (7, 3), (7, 8), (9, 5), (9, 6), (10, 0) ... --------------------------------------------------
References
- Edward Frenkel, Liebe und Mathematik, Springer, Spektrum, 2014, p. 84.
- Carlos J. Moreno and Samuel S. Wagstaff, Jr., Sums of Squares of Integers, Chapman & Hall/CRC, Boca Raton, London, New York, pp. 246-247 (corrected).
- J. H. Silverman, The Arithmetic of Elliptic Curves, Springer, 1986, pp. 46-48.
- J. H. Silverman, A Friendly Introduction to Number Theory, 3rd ed., Pearson Education, Inc, 2006, Table 45.6, p. 403, Theorem 47.2, p. 413 (4th ed., Pearson 2014, Table 6, p. 369, Theorem 2, p. 383)
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- J. E. Cremona, Algorithms for Modular Elliptic Curves.
- Yves Martin and Ken Ono, Eta-Quotients and Elliptic Curves, Proc. Amer. Math. Soc. 125, No 11 (1997), 3169-3176.
- Carlos J. Moreno and Samuel S. Wagstaff, Jr., Sums of Squares of Integers, Chapman & Hall/CRC, Boca Raton, London, New York, pp. 246-247.
- J. H. Silverman, The Arithmetic of Elliptic Curves, Springer, 1986, pp. 46-48.
Formula
a(n) gives the number of solutions of the congruence y^2 == x^3 - 4*x^2 + 16 (mod prime(n)), n >= 1.
Comments