A272202 Number of solutions of the congruence y^2 == x^3 - 1 (mod p) as p runs through the primes.
2, 3, 5, 3, 11, 11, 17, 27, 23, 29, 27, 47, 41, 51, 47, 53, 59, 47, 51, 71, 83, 75, 83, 89, 83, 101, 123, 107, 107, 113, 147, 131, 137, 123, 149, 147, 143, 171, 167, 173, 179, 155, 191, 191, 197, 171, 195, 195, 227, 251, 233, 239, 227, 251, 257, 263, 269, 243, 251, 281
Offset: 1
Examples
The first nonnegative complete residue system {0, 1, ..., prime(n)-1} is used. The solutions (x, y) of y^2 == x^3 - 1 (mod prime(n)) begin: n, prime(n), a(n)\ solutions (x, y) 1, 2, 2: (0, 1), (1, 0) 2, 3, 3: (1, 0), (2, 1), (2, 2) 3, 5, 5: (0, 2), (0, 3), (1, 0), (3, 1), (3, 4) 4, 7, 3: (1, 0), (2, 0), (4, 0) 5, 11, 11: (1, 0), (3, 2), (3, 9), (5, 5), (5, 6), (7, 1), (7, 10), (8, 4), (8, 7), (10, 3), (10, 8) ...
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- Yves Martin and Ken Ono, Eta-Quotients and Elliptic Curves, Proc. Amer. Math. Soc. 125, No 11 (1997), 3169-3176.
Formula
a(n) gives the number of solutions of the congruence y^2 == x^3 - 1 (mod prime(n)), n >= 1.
Comments