A272205
A bisection of the primes congruent to 1 modulo 3 (A002476). This is the part depending on the corresponding A001479 entry being congruent to 4 or 5 modulo 6.
Original entry on oeis.org
19, 37, 43, 73, 103, 127, 163, 229, 283, 313, 331, 337, 379, 397, 421, 457, 463, 487, 499, 523, 541, 577, 607, 613, 619, 631, 691, 709, 727, 787, 811, 829, 853, 859, 877, 883, 967, 991, 997
Offset: 1
A272202
Number of solutions of the congruence y^2 == x^3 - 1 (mod p) as p runs through the primes.
Original entry on oeis.org
2, 3, 5, 3, 11, 11, 17, 27, 23, 29, 27, 47, 41, 51, 47, 53, 59, 47, 51, 71, 83, 75, 83, 89, 83, 101, 123, 107, 107, 113, 147, 131, 137, 123, 149, 147, 143, 171, 167, 173, 179, 155, 191, 191, 197, 171, 195, 195, 227, 251, 233, 239, 227, 251, 257, 263, 269, 243, 251, 281
Offset: 1
The first nonnegative complete residue system {0, 1, ..., prime(n)-1} is used. The solutions (x, y) of y^2 == x^3 - 1 (mod prime(n)) begin:
n, prime(n), a(n)\ solutions (x, y)
1, 2, 2: (0, 1), (1, 0)
2, 3, 3: (1, 0), (2, 1), (2, 2)
3, 5, 5: (0, 2), (0, 3), (1, 0),
(3, 1), (3, 4)
4, 7, 3: (1, 0), (2, 0), (4, 0)
5, 11, 11: (1, 0), (3, 2), (3, 9),
(5, 5), (5, 6), (7, 1),
(7, 10), (8, 4), (8, 7),
(10, 3), (10, 8)
...
A272204
A bisection of the primes congruent to 1 modulo 3 (A002476). This is the part depending on the corresponding A001479 entry being congruent to 1 or 2 modulo 6.
Original entry on oeis.org
7, 13, 31, 61, 67, 79, 97, 109, 139, 151, 157, 181, 193, 199, 211, 223, 241, 271, 277, 307, 349, 367, 373, 409, 433, 439, 547, 571, 601, 643, 661, 673, 733, 739, 751, 757, 769, 823, 907, 919, 937
Offset: 1
Showing 1-3 of 3 results.
Comments