cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272212 Sum of the odd numbers among the larger parts of the partitions of n into two parts.

This page as a plain text file.
%I A272212 #52 Nov 16 2024 20:16:52
%S A272212 0,0,1,0,3,3,8,5,12,12,21,16,27,27,40,33,48,48,65,56,75,75,96,85,108,
%T A272212 108,133,120,147,147,176,161,192,192,225,208,243,243,280,261,300,300,
%U A272212 341,320,363,363,408,385,432,432,481,456,507,507,560,533,588,588
%N A272212 Sum of the odd numbers among the larger parts of the partitions of n into two parts.
%C A272212 Sum of the lengths of the distinct rectangles with odd length and integer width such that L + W = n, W <= L. For example, a(10) = 21; the rectangles are 1 X 9, 3 X 7 and 5 X 5, so 9 + 7 + 5 = 21. - _Wesley Ivan Hurt_, Nov 18 2017
%H A272212 Colin Barker, <a href="/A272212/b272212.txt">Table of n, a(n) for n = 0..1000</a>
%H A272212 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%H A272212 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,2,-2,0,0,-1,1).
%F A272212 a(n) = a(n-1) + 2*a(n-4) - 2*a(n-5) - a(n-8) + a(n-9) for n > 8.
%F A272212 a(n) = (6*n^2 - 6*n + 1 + (10*n-5)*(-1)^n - (4*n - 2 - 2*(-1)^n)*(-1)^((2*n+1 - (-1)^n)/4))/32.
%F A272212 G.f.: x^2*(1 + x + x^2)*(1 - 2*x + 4*x^2 - 2*x^3 + x^4) / ((1-x)^3*(1+x)^2*(1+x^2)^2). - _Colin Barker_, Apr 22 2016
%F A272212 a(n+1) = A001318(n) - A272104(n+1). - _Wesley Ivan Hurt_, Apr 22 2016
%F A272212 E.g.f.: ((-5*(1 + 2*x))*exp(-x) + (1 + 6*x^2)*exp(x) + 4*(1 + x)*cos(x) + 4*x*sin(x))/32. - _Ilya Gutkovskiy_, Apr 27 2016
%F A272212 a(n) = Sum_{i=1..floor(n/2)} (n-i) * ((n-i) mod 2). - _Wesley Ivan Hurt_, Dec 06 2017
%e A272212 a(5) = 3; the partitions of 5 into two parts are (4,1),(3,2) and the sum of the odd numbers among the larger parts is 3.
%e A272212 a(6) = 8; the partitions of 6 into two parts are (5,1),(4,2),(3,3) and the sum of the odd numbers among the larger parts is 5+3 = 8.
%p A272212 A272212:=n->(6*n^2-6*n+1+(10*n-5)*(-1)^n-(4*n-2-2*(-1)^n)*(-1)^((2*n+1-(-1)^n)/4))/32: seq(A272212(n), n=0..100);
%t A272212 Table[(6n^2-6n+1+(10n-5)(-1)^n-(4n-2-2(-1)^n)(-1)^((2n+1-(-1)^n)/4))/32, {n,0,100}]
%t A272212 Table[Total@ Flatten[First /@ IntegerPartitions[n, {2}] /. k_ /; EvenQ@ k -> Nothing], {n, 0, 60}] (* _Michael De Vlieger_, Apr 26 2016, Version 10.2 *)
%t A272212 f[n_] := Sum[(n - i) Mod[n - i, 2], {i, Floor[n/2]}]; Array[f, 58, 0] (* _Robert G. Wilson v_, Dec 11 2017 *)
%t A272212 CoefficientList[ Series[x^2 (1 +x +x^2) (1 -2x +4x^2 -2x^3 +x^4)/((1 -x)^3 (1 +x)^2 (1 +x^2)^2), {x, 0, 57}], x] (* _Robert G. Wilson v_, Dec 13 2017 *)
%t A272212 Table[Total[Select[IntegerPartitions[n,{2}][[All,1]],OddQ]],{n,0,60}] (* _Harvey P. Dale_, Jun 29 2018 *)
%o A272212 (Magma) [(6*n^2-6*n+1+(10*n-5)*(-1)^n-(4*n-2-2*(-1)^n)*(-1)^((2*n+1-(-1)^n) div 4))/32: n in [0..100]];
%o A272212 (PARI)
%o A272212 concat(vector(2), Vec(x^2*(1+x+x^2)*(1-2*x+4*x^2-2*x^3+x^4)/((1-x)^3*(1+x)^2*(1+x^2)^2) + O(x^50))) \\ _Colin Barker_, Apr 23 2016
%o A272212 (PARI) a(n)=([0,1,0,0,0,0,0,0,0; 0,0,1,0,0,0,0,0,0; 0,0,0,1,0,0,0,0,0; 0,0,0,0,1,0,0,0,0; 0,0,0,0,0,1,0,0,0; 0,0,0,0,0,0,1,0,0; 0,0,0,0,0,0,0,1,0; 0,0,0,0,0,0,0,0,1; 1,-1,0,0,-2,2,0,0,1]^n*[0;0;1;0;3;3;8;5;12])[1,1] \\ _Charles R Greathouse IV_, Apr 29 2016
%Y A272212 Cf. A001318, A272104.
%K A272212 nonn,easy
%O A272212 0,5
%A A272212 _Wesley Ivan Hurt_, Apr 22 2016