A272237 a(n) = Product_{k=0..n} (n^2+k)^k.
2, 180, 2090880, 6044699520000, 7151106328088486400000, 5159620144413185246982598164480000, 3167269298042065159436486399933762922086400000000, 2200712918907364598767850489247066133407004510957047455416320000000
Offset: 1
Programs
-
Mathematica
Table[Product[(n^2+k)^k, {k, 0, n}], {n, 1, 10}] Table[((n^2+n)!)^(n+1) * BarnesG[n^2 + 1] / BarnesG[n^2 + n + 2], {n, 1, 10}]
Formula
a(n) = ((n^2+n)!)^(n+1) / A272238(n).
a(n) ~ exp(n/3 + 3/8) * n^(n*(n+1)).