This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A272239 #35 Jun 09 2022 02:30:03 %S A272239 8,243,125,121,27,214369,243,1323,2048,2187,2176,5021863,243,658489, %T A272239 85169,6859,5103,148046875,6125,19663,327680,23882747,2025,1830101, %U A272239 704,3536379,512,50625,19683,75926359382369,19652,49,2000000,793071875,4096,313046839,32768 %N A272239 Least positive integer b such that b > n and (n, b, n+b) is an abc-hit. %C A272239 An abc-hit is a triple of coprime positive integers a, b, c such that a + b = c and rad(abc) < c, where rad(n) is the largest squarefree number dividing n. %H A272239 Wikipedia, <a href="http://en.wikipedia.org/wiki/Abc_conjecture">abc conjecture</a> %e A272239 a(8) = 1323 because rad(8*1323*1331) = 2*21*11 = 462 < 1331, hence (8, 1323, 1331) is an abc-hit and (8, b, b+3) isn't an abc-hit for every b where 8 < b < 1323. %p A272239 rad:=n -> mul(i,i in factorset(n)): %p A272239 min_c_for_a:=proc(n) local a,b,c,ra,rc; %p A272239 for a to n do %p A272239 ra:=rad(a): %p A272239 for c from 2*a+1 do %p A272239 if igcd(a,c)=1 then rc:=rad(c): %p A272239 if ra*rc<c then b:=c-a: %p A272239 if ra*rc*rad(b)<c then break fi fi fi od: %p A272239 print([a,b,c]) od end; %o A272239 (PARI) rad(x, y, z) = my(f=factor(x*y*z)[, 1]~); prod(i=1, #f, f[i]) %o A272239 is_abc_hit(x, y, z) = gcd(x, y)==1 && gcd(x, z)==1 && gcd(y, z)==1 && rad(x, y, z) < z %o A272239 a(n) = my(b=n+1); while(!is_abc_hit(n, b, n+b), b++); b \\ _Felix Fröhlich_, May 08 2016 %Y A272239 Cf. A272240 (corresponding values of c). %Y A272239 Cf. A272236 (analog of this sequence without assumption that n - the smallest element of the triple). %Y A272239 Cf. A120498, A130510 (possible values of c in abc-hits). %Y A272239 Cf. A225426 (triples of abc-hits). %Y A272239 Cf. A130512 (radicals of abc-hits). %Y A272239 Cf. A007947 (radicals). %K A272239 nonn %O A272239 1,1 %A A272239 _Vladimir Letsko_, Apr 23 2016 %E A272239 More terms from _Jinyuan Wang_, Jun 08 2022