This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A272263 #19 Feb 18 2019 14:08:08 %S A272263 1,1,11,31,111,351,1151,3711,12031,38911,125951,407551,1318911, %T A272263 4268031,13811711,44695551,144637951,468058111,1514668031,4901568511, %U A272263 15861809151,51329892351,166107021311,537533612031,1739495309311,5629125066751,18216231370751 %N A272263 a(n) = numerator of A000032(n) - 1/2^n. %C A272263 A000032(n), Lucas numbers, and 1/2^n are autosequences of the second kind. %C A272263 Then a(n)/2^n is also an autosequence of the second kind. %C A272263 Their corresponding autosequences of the first kind are A000045(n) and n/2^n, the Oresme numbers. %C A272263 Difference table of A000032(n) - 1/2^n: %C A272263 1, 1/2, 11/4, 31/8, 111/16, 351/32, 1151/64, ... %C A272263 9/4, 9/8, 49/16, 129/32, 449/64, 1409/128, ... %C A272263 31/16, 31/32, 191/64, 511/128, 1791/256, ... %C A272263 129/64, 129/128, 769/256, ... %C A272263 511/256, 511/256, ... %C A272263 2049/1024, ... . %C A272263 The first upper diagonal is A140323(n)/A004171(n). The main diagonal is the double, i.e. A140323(n)/A000302(n). The inverse binomial transform is the signed sequence. %C A272263 Quintisections from a(2): %C A272263 11, 31, 111, 351, 1151, %C A272263 3711, 12031, 38911, 125951, 407551, %C A272263 1318911, 4268031, 13811711, 44695551, 144637951, %C A272263 etc. %H A272263 Colin Barker, <a href="/A272263/b272263.txt">Table of n, a(n) for n = 0..1000</a> %H A272263 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,2,-4). %F A272263 a(n) = a(n-1) + 10*A085449(n), for n>0, a(0)=1. %F A272263 a(n) = A087131(n) - 1. %F A272263 From _Colin Barker_, Apr 24 2016: (Start) %F A272263 a(n) = (-1+(1-sqrt(5))^n+(1+sqrt(5))^n). %F A272263 a(n) = 3*a(n-1)+2*a(n-2)-4*a(n-3) for n>2. %F A272263 G.f.: (1-2*x+6*x^2) / ((1-x)*(1-2*x-4*x^2)). %F A272263 (End) %e A272263 Numerators of a(0) =2-1=1, a(1)=1-1/2=1/2, a(2)=3-1/4=11/4, a(3)=4-1/8=31/8, ... . %t A272263 CoefficientList[Series[(1 - 2*x + 6*x^2)/((1 - x)*(1 - 2*x - 4*x^2)), {x, 0, 30}], x] (* _Robert Price_, Apr 24 2016 *) %t A272263 Table[Numerator[LucasL@ n - 1/2^n], {n, 0, 26}] (* _Michael De Vlieger_, Apr 24 2016 *) %o A272263 (PARI) Vec((1-2*x+6*x^2)/((1-x)*(1-2*x-4*x^2)) + O(x^50)) \\ _Colin Barker_, Apr 24 2016 %Y A272263 Cf. A000012, A000032, A000045, A000079, A000302, A004171, A085449, A087131, A140323. %K A272263 nonn,frac,easy %O A272263 0,3 %A A272263 _Paul Curtz_, Apr 24 2016