A272271 Numbers k such that 7*10^k - 23 is prime.
1, 2, 3, 23, 29, 34, 35, 38, 52, 57, 61, 82, 186, 209, 251, 366, 394, 426, 786, 979, 1382, 2037, 4557, 8995, 12774, 19170, 21828, 23259, 32003, 41831, 44999, 56785, 76483, 97987, 110468
Offset: 1
Examples
3 is in this sequence because 7*10^3 - 23 = 6977 is prime. Initial terms and associated primes: a(1) = 1, 47; a(2) = 2, 677; a(3) = 3, 6977; a(4) = 23, 699999999999999999999977; a(5) = 29, 699999999999999999999999999977, etc.
Links
- Makoto Kamada, Factorization of near-repdigit-related numbers.
- Makoto Kamada, Search for 69w77.
Programs
-
Mathematica
Select[Range[0, 100000], PrimeQ[7*10^# - 23] &]
-
PARI
is(n)=ispseudoprime(7*10^n - 23) \\ Charles R Greathouse IV, Jun 13 2017
Extensions
a(35) from Robert Price, Jul 27 2019
Comments