A272285 Primes of the form 43*n^2 - 537*n + 2971 in order of increasing nonnegative values of n.
2971, 2477, 2069, 1747, 1511, 1361, 1297, 1319, 1427, 1621, 1901, 2267, 2719, 3257, 3881, 4591, 5387, 6269, 7237, 8291, 9431, 10657, 11969, 13367, 14851, 16421, 18077, 19819, 21647, 23561, 25561, 27647, 29819, 32077, 34421, 39367, 41969, 44657, 47431, 50291
Offset: 1
Examples
1511 is in this sequence since 43*4^2 - 537*4 + 2971 = 688-2148+2971 = 1511 is prime.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Prime-Generating Polynomials
Crossrefs
Programs
-
Mathematica
n = Range[0, 100]; Select[43n^2 - 537n + 2971, PrimeQ[#] &]
-
PARI
lista(nn) = for(n=0, nn, if(ispseudoprime(p=43*n^2 - 537*n + 2971), print1(p, ", "))); \\ Altug Alkan, Apr 24 2016