cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272286 Decimal expansion of Product_{k >= 1} (k*(k+1))^(-1/(k*(k+1))), a constant related to the alternating Lüroth representations of real numbers.

Original entry on oeis.org

1, 2, 9, 2, 1, 5, 0, 1, 8, 4, 0, 6, 0, 9, 9, 8, 4, 1, 3, 4, 1, 5, 7, 1, 9, 0, 0, 0, 7, 4, 2, 1, 9, 7, 7, 7, 1, 5, 7, 3, 3, 6, 4, 6, 2, 0, 3, 8, 6, 7, 8, 7, 4, 4, 8, 7, 7, 3, 0, 0, 0, 6, 2, 5, 3, 9, 4, 0, 0, 9, 6, 1, 8, 2, 9, 7, 1, 0, 4, 2, 7, 5, 4, 0, 3, 9, 6, 8, 0, 5, 6, 7, 7, 5, 3, 6, 5, 4, 5, 1, 7, 7, 3, 3, 6
Offset: 0

Views

Author

Jean-François Alcover, Apr 24 2016

Keywords

Examples

			0.1292150184060998413415719000742197771573364620386787448773...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 1.8.1 Alternative representations [of real numbers], p. 62.

Crossrefs

Programs

  • Mathematica
    digits = 105; Exp[-NSum[((1 + (-1)^(n + 1))*Zeta[n + 1] - 1)/n, {n, 1, Infinity}, Method -> "AlternatingSigns", WorkingPrecision -> 2 digits, NSumTerms -> 200]] // RealDigits[#, 10, digits]& // First

Formula

Exp(-Sum_{n >= 1} (((1 + (-1)^(n+1))*Zeta(n+1) - 1)/n)). - After Vaclav Kotesovec's formula for A244109.

Extensions

Offset corrected by Andrey Zabolotskiy, Dec 12 2023