This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A272298 #31 Sep 08 2022 08:46:16 %S A272298 324,325,340,405,580,949,1620,2725,4420,6885,10324,14965,21060,28885, %T A272298 38740,50949,65860,83845,105300,130645,160324,194805,234580,280165, %U A272298 332100,390949,457300,531765,614980,707605,810324,923845,1048900,1186245,1336660,1500949,1679940,1874485,2085460 %N A272298 a(n) = n^4 + 324. %C A272298 This is the case k=3 of Sophie Germain's Identity n^4+(2*k^2)^2 = ((n-k)^2+k^2)*((n+k)^2+k^2). %H A272298 Bruno Berselli, <a href="/A272298/b272298.txt">Table of n, a(n) for n = 0..1000</a> %H A272298 Wikipedia, <a href="https://en.wikipedia.org/wiki/Sophie_Germain#Honors_in_number_theory">Sophie Germain's Identity</a>. %H A272298 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1). %F A272298 O.g.f.: (324 - 1295*x + 1955*x^2 - 1285*x^3 + 325*x^4)/(1 - x)^5. [Corrected by _Georg Fischer_, May 23 2019] %F A272298 E.g.f.: (324 + x + 7*x^2 + 6*x^3 + x^4)*exp(x). %F A272298 a(n) = (n^2 - 18)^2 + (6*n)^2. %t A272298 Table[n^4 + 324, {n, 0, 40}] %t A272298 LinearRecurrence[{5,-10,10,-5,1},{324,325,340,405,580},40] (* _Harvey P. Dale_, Jan 20 2021 *) %o A272298 (PARI) vector(40, n, n--; n^4+324) %o A272298 (Sage) [n^4+324 for n in (0..40)] %o A272298 (Maxima) makelist(n^4+324, n, 0, 40); %o A272298 (Magma) [n^4+324: n in [0..40]]; %o A272298 (Python) [n**4+324 for n in range(40)] %o A272298 (Python) for n in range(0, 10**5):print(n**4+324,end=", ") # _Soumil Mandal_, Apr 30 2016 %Y A272298 Cf. A005917. %Y A272298 Subsequence of A227855. %Y A272298 Cf. A000583 (k=0), A057781 (k=1), A272297 (k=2). %K A272298 nonn,easy %O A272298 0,1 %A A272298 _Bruno Berselli_, Apr 25 2016