A272325 Nonnegative numbers n such that n^4 + 853n^3 + 2636n^2 + 3536n + 1753 is prime.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 25, 26, 27, 30, 34, 37, 41, 43, 46, 50, 52, 53, 56, 59, 60, 61, 64, 66, 67, 68, 71, 76, 79, 81, 84, 87, 88, 89, 91, 92, 95, 96, 98, 99, 103, 106, 109, 118, 124, 126, 127, 128, 132
Offset: 1
Keywords
Examples
4 is in this sequence since 4^4 + 853*4^3 + 2636*4^2 + 3536*4 + 1753 = 256+54592+42176+14144+1753 = 112921 is prime.
Links
- Robert Price, Table of n, a(n) for n = 1..2457
- Eric Weisstein's World of Mathematics, Prime-Generating Polynomials
Crossrefs
Programs
-
Mathematica
Select[Range[0, 100], PrimeQ[#^4 + 853#^3 + 2636#^2 + 3536# + 1753] &]
-
PARI
lista(nn) = for(n=0, nn, if(isprime(n^4+853*n^3+2636*n^2+3536*n+1753), print1(n, ", "))); \\ Altug Alkan, Apr 25 2016
Comments