A272335 Decimal expansion of a function approximation constant which is the analog of Gibbs's constant 2*G/Pi (A036793) for de la Vallée-Poussin sums.
1, 1, 4, 2, 7, 2, 8, 1, 2, 6, 9, 3, 0, 6, 8, 1, 2, 8, 4, 8, 1, 0, 2, 1, 8, 4, 5, 9, 5, 6, 6, 5, 7, 1, 1, 1, 9, 3, 0, 1, 1, 0, 1, 5, 0, 4, 5, 2, 9, 4, 7, 0, 2, 3, 9, 5, 7, 1, 7, 1, 2, 5, 3, 0, 9, 9, 2, 9, 0, 5, 7, 4, 5, 0, 5, 6, 8, 1, 5, 3, 5, 5, 5, 8, 4, 0, 1, 0, 3, 0, 3, 3, 7, 4, 0, 2, 6, 8, 2, 9, 9
Offset: 1
Examples
1.14272812693068128481021845956657111930110150452947023957171253...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 4.1 Gibbs-Wilbraham Constant, p. 248.
Links
- R. P. Boyer and W. M. Y. Goh Generalized Gibbs phenomenon for Fourier partial sums and de la Vallée-Poussin sums, J. Appl. Math. Comput. 37 (2011) 421-442, p. 11.
- Steven R. Finch, Errata and Addenda to Mathematical Constants, arXiv:2001.00578 [math.HO], 2020-2024; p. 33.
Programs
-
Mathematica
(2/Pi)(2 SinIntegral[4 Pi/3] - SinIntegral[2 Pi/3]) // N[#, 101]& // RealDigits // First
Formula
Equals (2/Pi)*Integral_{t=0..2*Pi/3} (cos(t) - cos(2*t))/t^2 dt.
Equals (2/Pi)*(2*Si(4*Pi/3) - Si(2*Pi/3)), where Si is the Sine integral function.