cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272351 Number of ordered ways to write n as w^2 + x^2 + y^2 + z^2 with x^4 + 8*y*z*(y^2+z^2) a fourth power, where w,x,y,z are nonnegative integers with w >= x and y > z.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 1, 3, 3, 2, 1, 2, 3, 2, 1, 4, 5, 2, 2, 3, 3, 2, 2, 3, 5, 4, 1, 5, 6, 1, 1, 5, 4, 5, 3, 2, 5, 2, 3, 7, 7, 3, 2, 5, 4, 2, 1, 5, 8, 7, 2, 5, 9, 1, 3, 4, 4, 5, 2, 5, 8, 6, 1, 8, 8, 4, 4, 6, 5, 1, 5, 5, 10, 6, 2, 6, 8, 1, 2
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 27 2016

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 0, and a(n) = 1 only for n = 2^k, 4^k*m (k = 0,1,2,... and m = 3, 7, 31, 55, 71, 79, 151, 191).
(ii) For (b,c) = (8,8), (16,64), any positive integer can be written as w^2 + x^2 + y^2 + z^2 with x^4 + b*y^3*z + c*y*z^3 a fourth power, where w is a positive integer and x,y,z are nonnegative integers.
(iii) For each triple (a,b,c) = (1,20,60), (1,24,56), (9,20,60), (9,32,96), any positive integer can be written as w^2 + x^2 + y^2 + z^2 with a*x^4 + b*y^3*z + c*y*z^3 a square, where w is a positive integer and x,y,z are nonnegative integers.
The author has proved part (ii) of the conjecture in arXiv:1604.06723. - Zhi-Wei Sun, May 09 2016

Examples

			a(1) = 1 since 1 = 0^2 + 0^2 + 1^2 + 0^2 with 0 = 0, 1 > 0 and 0^4 + 8*1*0*(1^2+0^2) = 0^4.
a(2) = 1 since 2 = 1^2 + 0^2 + 1^2 + 0^2 with 1 > 0 and 0^4 + 8*1*0*(1^2+0^2) = 0^4.
a(3) = 1 since 3 = 1^2 + 1^2 + 1^2 + 0^2 with 1 = 1, 1 > 0 and 1^4 + 8*1*0*(1^2+0^2) = 1^4.
a(7) = 1 since 7 = 1^2 + 1^2 + 2^2 + 1^2 with 1 = 1, 3 > 1 and 1^4 + 8*2*1*(2^2+1^2) = 3^4.
a(31) = 1 since 31 = 5^2 + 1^2 + 2^2 + 1^2 with 5 > 1, 2 > 1 and 1^4 + 8*2*1*(2^2+1^2) = 3^4.
a(55) = 1 since 55 = 7^2 + 1^2 + 2^2 + 1^2 with 7 > 1, 2 > 1 and 1^4 + 8*2*1*(2^2+1^2) = 3^4.
a(71) = 1 since 71 = 3^2 + 1^2 + 6^2 + 5^2 with 3 > 1, 6 > 5 and 1^4 + 8*6*5*(6^2+5^2) = 11^4.
a(79) = 1 since 79 = 5^2 + 3^2 + 6^2 + 3^2 with 5 > 3, 6 > 3 and 3^4 + 8*6*3*(6^2+3^2) = 9^4.
a(151) = 1 since 151 = 5^2 + 3^2 + 9^2 + 6^2 with 5 > 3, 9 > 6 and 3^4 + 8*9*6*(9^2+6^2) = 15^4.
a(191) = 1 since 191 = 3^2 + 1^2 + 10^2 + 9^2 with 3 > 1, 10 > 9 and 1^4 + 8*10*9*(10^2+9^2) = 19^4.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
    QQ[n_]:=QQ[n]=IntegerQ[n^(1/4)]
    Do[r=0;Do[If[SQ[n-x^2-y^2-z^2]&&QQ[x^4+8y*z*(y^2+z^2)],r=r+1],{z,0,(Sqrt[2n-1]-1)/2},{y,z+1,Sqrt[n-z^2]},{x,0,Sqrt[(n-y^2-z^2)/2]}];Print[n," ",r];Continue,{n,1,80}]