A272367 Primes p separated from their adjacent primes on both sides by a prime number of successive composites, while the adjacent primes of p are separated by a prime number of integers.
53, 89, 97, 113, 127, 157, 173, 211, 257, 263, 307, 317, 331, 359, 367, 373, 389, 397, 401, 449, 457, 479, 487, 491, 499, 509, 541, 563, 593, 607, 653, 683, 727, 733, 743, 751, 761, 769, 773, 853, 863, 877, 887, 907, 911, 937, 947, 953, 967, 977, 983, 991, 997, 1069, 1103, 1109, 1117, 1123, 1187
Offset: 1
Keywords
Examples
a(1) = 53. The primes around and including 53 are {47, 53, 59}. The number of composites between these are {5, 5} and the number of integers between 47 and 59 is 11; all of {5, 5, 11} are prime, thus 53 is a term.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Crossrefs
Subsequence of A209617.
Programs
-
Mathematica
Select[Prime@ Range@ 195, Function[p, Times @@ Boole@ PrimeQ@ Flatten[Map[Differences, {#, Delete[#, 2]}] - 1] &@ Map[NextPrime[p, #] &, Range[-1, 1]] == 1]] (* Michael De Vlieger, Apr 27 2016 *)
-
PARI
list(lim)=my(v=List(),p=2,q=3); forprime(r=5,nextprime(lim\1+1), if(isprime(q-p-1) && isprime(r-q-1) && isprime(r-p-1), listput(v,q)); p=q; q=r); Vec(v) \\ Charles R Greathouse IV, Apr 30 2016
Extensions
More terms from Michael De Vlieger, Apr 27 2016