cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272369 Numbers n such that Bernoulli number B_{n} has denominator 1410.

This page as a plain text file.
%I A272369 #16 May 02 2016 17:35:26
%S A272369 92,184,1564,1748,2116,3496,4232,4324,5428,5612,6532,8648,9476,9844,
%T A272369 10028,10856,11224,12604,14444,15364,16652,18124,18952,19412,20056,
%U A272369 20884,21068,23644,24932,26036,26588,28612,28796,28888,29164,30728,31004,31924,32108,32476,33304,34868,35236,35788,36248,36524
%N A272369 Numbers n such that Bernoulli number B_{n} has denominator 1410.
%C A272369 1410 = 2 * 3 * 5 * 47.
%C A272369 All terms are multiple of a(1) = 92.
%C A272369 For these numbers numerator(B_{n}) mod denominator(B_{n}) = 1333.
%H A272369 Chai Wah Wu, <a href="/A272369/b272369.txt">Table of n, a(n) for n = 1..10000</a>
%e A272369 Bernoulli B_{92} is -1295585948207537527989427828538576749659341483719435143023316326829946247/1410, hence 92 is in the sequence.
%p A272369 with(numtheory): P:=proc(q,h) local n;  for n from 2 by 2 to q do
%p A272369 if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6,1410);
%t A272369 Select[92 Range@ 360, Denominator@ BernoulliB@ # == 1410 &] (* _Michael De Vlieger_, Apr 28 2016 *)
%o A272369 (PARI) lista(nn) = for(n=1, nn, if(denominator(bernfrac(n)) == 1410, print1(n, ", "))); \\ _Altug Alkan_, Apr 28 2016
%o A272369 (Python)
%o A272369 from sympy import divisors, isprime
%o A272369 A272369_list = []
%o A272369 for i in range(92, 10**6, 92):
%o A272369     for d in divisors(i):
%o A272369         if d not in (1,2,4,46) and isprime(d+1):
%o A272369             break
%o A272369     else:
%o A272369         A272369_list.append(i) # _Chai Wah Wu_, May 02 2016
%Y A272369 Cf. A045979, A051222, A051225, A051226, A051227, A051228, A051229, A051230, A119456, A119480, A249134, A255684, A271634, A271635, A272138, A272139, A272140, A272183, A272184, A272185, A272186.
%K A272369 nonn,easy
%O A272369 1,1
%A A272369 _Paolo P. Lava_, Apr 28 2016
%E A272369 a(18)-a(29) from _Altug Alkan_, Apr 28 2016
%E A272369 More terms from _Michael De Vlieger_, Apr 28 2016