cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272376 Twin primes both of which are the sum of three positive cubes.

This page as a plain text file.
%I A272376 #20 May 04 2016 19:21:33
%S A272376 2267,2269,3527,3529,10331,10333,14867,14869,17207,17209,18521,18523,
%T A272376 18917,18919,20231,20233,20357,20359,25577,25579,27791,27793,28547,
%U A272376 28549,31247,31249,35279,35281,36899,36901,40697,40699,44279,44281,48779,48781,51479,51481
%N A272376 Twin primes both of which are the sum of three positive cubes.
%H A272376 Charles R Greathouse IV, <a href="/A272376/b272376.txt">Table of n, a(n) for n = 1..10000</a>
%e A272376 3527 and 3529 are terms since 3527=3^3+5^3+15^3 and 3529=1^3+11^3+13^3.
%t A272376 cu[n_] := {}!=Quiet@ IntegerPartitions[n,{3},Range[n^(1/3)]^3, 1]; Flatten@ Rest@ Reap@ Do[If[ PrimeQ[p+2] && cu[p] && cu[p+2], Sow[{p, p+2}]], {p, Prime@ Range@ 10000}] (* _Giovanni Resta_, Apr 28 2016 *)
%o A272376 (PARI) list(lim)=my(v=List(), k, t); lim\=1; for(x=1, sqrtnint(lim-2, 3), for(y=1, min(sqrtnint(lim-x^3-1, 3), x), k=x^3+y^3; for(z=1, min(sqrtnint(lim-k, 3), y), if(isprime(t=k+z^3), listput(v, t))))); v=Set(v); for(i=2,#v-1,if(v[i]!=v[i-1]+2 && v[i]!=v[i+1]-2, v[i]=0)); v=Set(v); v[3..#v] \\ _Charles R Greathouse IV_, Apr 29 2016
%Y A272376 Cf. A001097, A007490, A270225.
%K A272376 nonn
%O A272376 1,1
%A A272376 _Carmine Suriano_, Apr 28 2016