This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A272388 #24 Feb 16 2025 08:33:34 %S A272388 117,160,203,225,234,318,319,319,320,351,406,429,450,468,468,480,585, %T A272388 595,595,595,609,612,636,638,638,640,671,675,680,680,697,697,702,741, %U A272388 780,800,812,819,858,884,884,888,900,925,935,936,936,954,957,957,960,990,990 %N A272388 Longest side of Heronian tetrahedron. %C A272388 A Heronian tetrahedron or perfect tetrahedron is a tetrahedron whose edge lengths, face areas and volume are all integers. %H A272388 R. H. Buchholz, <a href="https://doi.org/10.1017/S0004972700030252">Perfect Pyramids</a>, Bull. Austral. Math. Soc. 45, 353-368, 1992. %H A272388 Susan H. Marshall and Alexander R. Perlis, <a href="http://www.maa.org/sites/default/files/pdf/upload_library/2/Marshall2-Monthly-2014.pdf">Heronian Tetrahedra Are Lattice Tetrahedra</a>, American Mathematical Monthly 120:2 (2013), 140-149. %H A272388 Ivars Peterson, <a href="https://www.sciencenews.org/article/perfect-pyramids">Perfect pyramids</a>. %H A272388 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HeronianTetrahedron.html">Heronian Tetrahedron</a>. %e A272388 The following are examples of Heronian tetrahedra. %e A272388 dAB, dAC, dBC, dCD, dBD, dAD, SABC, SABD, SACD, SBCD, Volume %e A272388 117, 84, 51, 52, 53, 80, 1890, 1800, 2016, 1170, 18144 %e A272388 160, 153, 25, 39, 56, 120, 1872, 2688, 1404, 420, 8064 %e A272388 203, 195, 148, 203, 195, 148, 13650, 13650, 13650, 13650, 611520 %e A272388 225, 200, 65, 119, 156, 87, 6300, 4914, 2436, 3570, 35280 %e A272388 234, 168, 102, 104, 106, 160, 7560, 7200, 8064, 4680, 145152 %e A272388 318, 221, 203, 42, 175, 221, 22260, 18564, 4620, 2940, 206976 %e A272388 319, 318, 175, 175, 210, 221, 26796, 23100, 18564, 14700, 1034880 %e A272388 319, 318, 175, 203, 252, 221, 26796, 27720, 22260, 17640, 1241856 %e A272388 320, 306, 50, 78, 112, 240, 7488, 10752, 5616, 1680, 64512 %e A272388 351, 252, 153, 156, 159, 240, 17010, 16200, 18144, 10530, 489888 %e A272388 where %e A272388 dPQ is the distance between vertices P and Q and %e A272388 SPQR is the area of triangle PQR. %t A272388 aMax=360(*WARNING:takes a long time*); %t A272388 heron=1/4Sqrt[(#1+#2+#3)(-#1+#2+#3)(#1-#2+#3)(#1+#2-#3)]&; %t A272388 cayley=1/24Sqrt[2Det[{ %t A272388 {0,1,1,1,1}, %t A272388 {1,0,#1^2,#2^2,#6^2}, %t A272388 {1,#1^2,0,#3^2,#5^2}, %t A272388 {1,#2^2,#3^2,0,#4^2}, %t A272388 {1,#6^2,#5^2,#4^2,0} %t A272388 }]]&; %t A272388 Do[ %t A272388 S1=heron[a,b,c]; %t A272388 If[S1//IntegerQ//Not,Continue[]]; %t A272388 Do[ %t A272388 S2=heron[a,e,f]; %t A272388 If[S2//IntegerQ//Not,Continue[]]; %t A272388 Do[ %t A272388 If[b==e&&c>f||b==f&&c>e,Continue[]]; %t A272388 S3=heron[b,d,f]; %t A272388 If[S3//IntegerQ//Not,Continue[]]; %t A272388 S4=heron[c,d,e]; %t A272388 If[S4//IntegerQ//Not,Continue[]]; %t A272388 V=cayley[a,b,c,d,e,f]; %t A272388 If[V//IntegerQ//Not,Continue[]]; %t A272388 If[V==0,Continue[]]; %t A272388 a//Sow(*{a,b,c,d,e,f,S1,S2,S3,S4,V}//Sow*); %t A272388 ,{d,Sqrt[((b^2-c^2+e^2-f^2)/(2a))^2+4((S1-S2)/a)^2]//Ceiling,Min[a,Sqrt[((b^2-c^2+e^2-f^2)/(2a))^2+4((S1+S2)/a)^2]]}]; %t A272388 ,{e,a-b+1,b},{f,a-e+1,b}]; %t A272388 ,{a,117,aMax},{b,a/2//Ceiling,a},{c,a-b+1,b}]//Reap//Last//Last %Y A272388 Cf. A120131, A120132, A120133. %K A272388 nonn %O A272388 1,1 %A A272388 _Albert Lau_, May 19 2016 %E A272388 a(11)-a(53) from _Giovanni Resta_, May 20 2016