This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A272389 #7 May 01 2022 19:13:22 %S A272389 117,160,203,225,318,319,319 %N A272389 Longest side of primitive Heronian tetrahedron. %C A272389 A Heronian tetrahedron or perfect tetrahedron is a tetrahedron whose edge lengths, face areas and volume are all integers. %C A272389 Primitive tetrahedron means 6 sides don't share a common factor. %e A272389 see A272388 %t A272389 aMax=360(*WARNING:takes a long time*); %t A272389 heron=1/4Sqrt[(#1+#2+#3)(-#1+#2+#3)(#1-#2+#3)(#1+#2-#3)]&; %t A272389 cayley=1/24Sqrt[2Det[{ %t A272389 {0,1,1,1,1}, %t A272389 {1,0,#1^2,#2^2,#6^2}, %t A272389 {1,#1^2,0,#3^2,#5^2}, %t A272389 {1,#2^2,#3^2,0,#4^2}, %t A272389 {1,#6^2,#5^2,#4^2,0} %t A272389 }]]&; %t A272389 Do[ %t A272389 S1=heron[a,b,c]; %t A272389 If[S1//IntegerQ//Not,Continue[]]; %t A272389 Do[ %t A272389 S2=heron[a,e,f]; %t A272389 If[S2//IntegerQ//Not,Continue[]]; %t A272389 Do[ %t A272389 If[GCD[a, b, c, d, e, f] > 1, Continue[]]; %t A272389 If[b==e&&c>f||b==f&&c>e,Continue[]]; %t A272389 S3=heron[b,d,f]; %t A272389 If[S3//IntegerQ//Not,Continue[]]; %t A272389 S4=heron[c,d,e]; %t A272389 If[S4//IntegerQ//Not,Continue[]]; %t A272389 V=cayley[a,b,c,d,e,f]; %t A272389 If[V//IntegerQ//Not,Continue[]]; %t A272389 If[V==0,Continue[]]; %t A272389 a//Sow(*{a,b,c,d,e,f,S1,S2,S3,S4,V}//Sow*); %t A272389 ,{d,Sqrt[((b^2-c^2+e^2-f^2)/(2a))^2+4((S1-S2)/a)^2]//Ceiling,Min[a,Sqrt[((b^2-c^2+e^2-f^2)/(2a))^2+4((S1+S2)/a)^2]]}]; %t A272389 ,{e,a-b+1,b},{f,a-e+1,b}]; %t A272389 ,{a,117,aMax},{b,a/2//Ceiling,a},{c,a-b+1,b}]//Reap//Last//Last %Y A272389 Cf. A272388 %K A272389 nonn,more %O A272389 1,1 %A A272389 _Albert Lau_, May 21 2016