This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A272390 #13 May 28 2016 07:26:11 %S A272390 203,888,1804,2431,2873 %N A272390 Longest side of primitive Heronian tetrahedron with 4 congruent triangle faces. %C A272390 A Heronian tetrahedron or perfect tetrahedron is a tetrahedron whose edge lengths, face areas and volume are all integers. %C A272390 Primitive tetrahedron means 4 edge lengths share no common factor. %C A272390 Properties: %C A272390 1. 3 pairs of opposite edge lengths are equal. %C A272390 2. The perimeter must be an even number. %C A272390 3. The faces are acute triangles, and cannot be isosceles triangle. %C A272390 It is known that 5512,8484,11275,19695,32708,294175,683787 are in the sequence. %e A272390 Below shows some example: (might contains gap) %e A272390 a, b, c, S, V %e A272390 203, 195, 148, 13650, 611520 %e A272390 888, 875, 533, 223860, 37608480 %e A272390 1804, 1479, 1183, 870870, 214582368 %e A272390 2431, 2296, 2175, 2277660, 1403038560 %e A272390 2873, 2748, 1825, 2419950, 1355172000 %e A272390 5512, 5215, 1887, 4919460, 1377448800 %e A272390 8484, 6625, 6409, 20980050, 30546952800 %e A272390 11275, 10136, 8619, 41861820, 103147524480 %e A272390 19695, 16448, 13073, 106675680, 323290060800 %e A272390 32708, 31493, 24525, 363332970, 2685757314240 %t A272390 heron=1/4Sqrt[(#1+#2+#3)(-#1+#2+#3)(#1-#2+#3)(#1+#2-#3)]&; %t A272390 cayley=1/24Sqrt[2Det[{ %t A272390 {0,1,1,1,1}, %t A272390 {1,0,#1^2,#2^2,#6^2}, %t A272390 {1,#1^2,0,#3^2,#5^2}, %t A272390 {1,#2^2,#3^2,0,#4^2}, %t A272390 {1,#6^2,#5^2,#4^2,0} %t A272390 }]]&; %t A272390 aMin=203; %t A272390 aMax=2000(*WARNING:runs very slow*); %t A272390 Do[ %t A272390 If[GCD[a,b,c]>1,Continue[]]; %t A272390 S=heron[a,b,c]; %t A272390 If[S//IntegerQ//Not,Continue[]]; %t A272390 V=cayley[a,b,c,a,b,c]; %t A272390 If[V//IntegerQ//Not,Continue[]]; %t A272390 a(*{a,b,c,S,V}*)//Sow; %t A272390 ,{a,aMin,aMax} %t A272390 ,{b,a/Sqrt[2]//Ceiling,a-1} %t A272390 ,{c,Mod[a+b,2,Floor[Sqrt[a^2-b^2]]+1],b-1,2} %t A272390 ]//Reap//Last//Last(*//TableForm*) %t A272390 {S,V}=.; %t A272390 (* %t A272390 (*this piece of code runs much faster but might contains gap*) %t A272390 mMax=100; %t A272390 Do[ %t A272390 {a,b,c}={n(m^2+k^2),m(n^2+k^2),(m+n)(m n-k^2)}; %t A272390 {a,b,c}={a,b,c}/GCD[a,b,c]; %t A272390 V=cayley[a,b,c,a,b,c]; %t A272390 If[V//IntegerQ//Not,Continue[]]; %t A272390 a(*{a,b,c,heron[a,b,c],V}*)//Sow %t A272390 ,{m,mMax} %t A272390 ,{n,m-1} %t A272390 ,{k,Floor[Sqrt[(m^2 n)/(2m+n)]+1],n-1} %t A272390 ]//Reap//Last//Last//Union(*TableForm*) %t A272390 {a,b,c,V}=.; %t A272390 *) %K A272390 nonn,more %O A272390 1,1 %A A272390 _Albert Lau_, May 26 2016