cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272400 Square array read by antidiagonals upwards in which T(n,k) is the product of the n-th noncomposite number and the sum of the divisors of k, n>=1, k>=1.

This page as a plain text file.
%I A272400 #19 Apr 29 2016 23:36:38
%S A272400 1,2,3,3,6,4,5,9,8,7,7,15,12,14,6,11,21,20,21,12,12,13,33,28,35,18,24,
%T A272400 8,17,39,44,49,30,36,16,15,19,51,52,77,42,60,24,30,13,23,57,68,91,66,
%U A272400 84,40,45,26,18,29,69,76,119,78,132,56,75,39,36,12,31,87,92,133,102,156,88,105,65,54,24,28
%N A272400 Square array read by antidiagonals upwards in which T(n,k) is the product of the n-th noncomposite number and the sum of the divisors of k, n>=1, k>=1.
%F A272400 T(n,k) = A008578(n)*A000203(k), n>=1, k>=1.
%F A272400 T(n,k) = A272214(n-1,k), n>=2.
%e A272400 The corner of the square array begins:
%e A272400 1,   3,   4,   7,   6,  12,   8,  15,  13,  18...
%e A272400 2,   6,   8,  14,  12,  24,  16,  30,  26,  36...
%e A272400 3,   9,  12,  21,  18,  36,  24,  45,  39,  54...
%e A272400 5,  15,  20,  35,  30,  60,  40,  75,  65,  90...
%e A272400 7,  21,  28,  49,  42,  84,  56, 105,  91, 126...
%e A272400 11, 33,  44,  77,  66, 132,  88, 165, 143, 198...
%e A272400 13, 39,  52,  91,  78, 156, 104, 195, 169, 234...
%e A272400 17, 51,  68, 119, 102, 204, 136, 255, 221, 306...
%e A272400 19, 57,  76, 133, 114, 228, 152, 285, 247, 342...
%e A272400 23, 69,  92, 161, 138, 276, 184, 345, 299, 414...
%e A272400 ...
%t A272400 Table[If[# == 1, 1, Prime[# - 1]] DivisorSigma[1, k] &@(n - k + 1), {n, 12}, {k, n}] // Flatten (* _Michael De Vlieger_, Apr 28 2016 *)
%Y A272400 Rows 1-3: A000203, A074400, A272027.
%Y A272400 Columns 1-2: A008578, A112773.
%Y A272400 The diagonal 2, 9, 20... is A272211, the main diagonal of A272214.
%Y A272400 Cf. A272173.
%K A272400 nonn,tabl
%O A272400 1,2
%A A272400 _Omar E. Pol_, Apr 28 2016