A272405 Numbers n such that sum of the divisors of n is not of the form x^2 + y^2 + z^2 where x, y, z are integers.
4, 8, 12, 16, 18, 24, 25, 32, 38, 48, 59, 64, 75, 91, 96, 99, 114, 125, 128, 130, 135, 158, 166, 169, 177, 192, 196, 203, 205, 209, 221, 239, 242, 251, 256, 268, 273, 283, 290, 315, 324, 347, 358, 365, 367, 375, 378, 379, 384, 387, 390, 392, 403, 422, 423, 427, 443, 445, 460, 474, 476, 493
Offset: 1
Examples
1 is not a term since sigma(1) = 1 = 0^2 + 0^2 + 1^2 is the sum of 3 squares. 4 is a term since sigma(4) = 7 is not the sum of 3 squares.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Paul Pollack, Values of the Euler and Carmichael functions which are sums of three squares, Integers, Vol. 11 (2011), pp. 145-161.
Programs
-
Mathematica
Select[Range@ 500, ! SquaresR[3, DivisorSigma[1, #]] > 0 &] (* Michael De Vlieger, Apr 29 2016 *)
-
PARI
isA004215(n) = {n\4^valuation(n, 4)%8==7} lista(nn) = for(n=1, nn, if(isA004215(sigma(n)), print1(n, ", ")));
-
Python
from itertools import count, islice from sympy import divisor_sigma def A272405_gen(startvalue=1): # generator of terms >= startvalue return filter(lambda n:not (m:=(~(s:=int(divisor_sigma(n)))&s-1).bit_length())&1 and (s>>m)&7==7,count(max(startvalue,1))) A272405_list = list(islice(A272405_gen(),30)) # Chai Wah Wu, Jul 09 2022
Comments