cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272406 Primes p == 1 (mod 3) for which A261029(34*p) = 2.

This page as a plain text file.
%I A272406 #10 Dec 01 2018 20:03:54
%S A272406 7,13,19,31,37,43,61,67,73,79,97,103,109,127,139,151,157,163,181,193,
%T A272406 199,211,223,229,241,271,277,283,307,313,331,337,367,373,397,409,421,
%U A272406 439,457,487,571,709,787,877
%N A272406 Primes p == 1 (mod 3) for which A261029(34*p) = 2.
%C A272406 By theorem in A272384, case q=17, the sequence is finite with a(n)<1156.
%H A272406 Vladimir Shevelev, <a href="http://arxiv.org/abs/1508.05748">Representation of positive integers by the form x^3+y^3+z^3-3xyz</a>, arXiv:1508.05748 [math.NT], 2015.
%t A272406 r[n_] := Reduce[0 <= x <= y <= z && z >= x+1 && n == x^3 + y^3 + z^3 - 3 x y z, {x, y, z}, Integers];
%t A272406 a29[n_] := Which[rn = r[n]; rn === False, 0, rn[[0]] === And, 1, rn[[0]] === Or, Length[rn], True, Print["error ", rn]];
%t A272406 Select[Select[Range[7, 997, 3], PrimeQ], a29[34 #] == 2&] (* _Jean-François Alcover_, Dec 01 2018 *)
%Y A272406 Cf. A261029, A272381, A272382, A272384, A272404.
%K A272406 nonn,fini,full
%O A272406 1,1
%A A272406 _Vladimir Shevelev_, Apr 29 2016
%E A272406 All terms (after first author's ones) were calculated by _Peter J. C. Moses_, Apr 29 2016