A272412 Numbers n such that sigma(n) is a Fibonacci number.
1, 2, 7, 9, 66, 70, 94, 115, 119, 2479, 18084, 19180, 19290, 22060, 23156, 23178, 24934, 24956, 25756, 26715, 27034, 28678, 28965, 29578, 30094, 32253, 32793, 34113, 35365, 38635, 39319, 40963, 42493, 44413, 45223, 45653, 322032, 429424, 503175, 624027, 670975
Offset: 1
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Max Alekseyev, PARI/GP Scripts for Miscellaneous Math Problems
- Sergei V. Konyagin, Florian Luca and Pantelimon Stanica, Sum Of Divisors Of Fibonacci Numbers, Uniform Distribution Theory 4 (2009), no.1, 1-8.
- N. J. A. Sloane, The OEIS, Mathematical Discovery, and Insomnia, Slides of plenary talk presented at Computational Discovery in Mathematics, Western University, London, Ontario, May 12-16. Mentions this sequence at page 32.
Programs
-
Mathematica
f = Fibonacci@Range[2,40]; Select[Range[10^6], MemberQ[f, DivisorSigma[1, #]] &] (* Giovanni Resta, Apr 29 2016 *)
-
PARI
lista(nn) = for(n=1, nn, if(issquare(5*sigma(n)^2+4) || issquare(5*sigma(n)^2-4), print1(n, ", ")));
-
PARI
isFibonacci(n)=my(k=n^2);issquare(k+=(k+1)<<2) || (n>0 && issquare(k-8)) is(n)=isFibonacci(sigma(n)) \\ Charles R Greathouse IV, Apr 29 2016
Comments