cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272412 Numbers n such that sigma(n) is a Fibonacci number.

Original entry on oeis.org

1, 2, 7, 9, 66, 70, 94, 115, 119, 2479, 18084, 19180, 19290, 22060, 23156, 23178, 24934, 24956, 25756, 26715, 27034, 28678, 28965, 29578, 30094, 32253, 32793, 34113, 35365, 38635, 39319, 40963, 42493, 44413, 45223, 45653, 322032, 429424, 503175, 624027, 670975
Offset: 1

Views

Author

Altug Alkan, Apr 29 2016

Keywords

Comments

Konyagin, Luca & Stanica proved that for almost all positive integers n, the sum of the divisors of Fibonacci(n) is not a Fibonacci number (see page 7).
If the sum of the k-th powers of the divisors of Fibonacci(n) is a Fibonacci number for k > 1, then the corresponding Fibonacci(n) is 1 or 2.

Crossrefs

Programs

  • Mathematica
    f = Fibonacci@Range[2,40]; Select[Range[10^6], MemberQ[f, DivisorSigma[1, #]] &] (* Giovanni Resta, Apr 29 2016 *)
  • PARI
    lista(nn) = for(n=1, nn, if(issquare(5*sigma(n)^2+4) || issquare(5*sigma(n)^2-4), print1(n, ", ")));
    
  • PARI
    isFibonacci(n)=my(k=n^2);issquare(k+=(k+1)<<2) || (n>0 && issquare(k-8))
    is(n)=isFibonacci(sigma(n)) \\ Charles R Greathouse IV, Apr 29 2016