cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272429 Asymptotic mean (normalized by n) of the second largest connected component in a random mapping on n symbols.

Original entry on oeis.org

1, 7, 0, 9, 0, 9, 6, 1, 9, 8, 5, 9, 6, 6, 2, 3, 9, 2, 1, 4, 4, 6, 0, 7, 2, 8, 4, 1, 3, 3, 1, 1, 7, 3, 8, 7, 0, 4, 7, 1, 9, 0, 7, 2, 9, 6, 2, 6, 2, 8, 8, 3, 2, 3, 5, 5, 8, 5, 3, 8, 8, 1, 0, 0, 6, 3, 9, 8, 3, 6, 9, 5, 3, 0, 1, 5, 3, 7, 3, 9, 8, 9, 6, 4, 8, 2, 6, 6, 5, 3, 7, 5, 5, 3, 5
Offset: 0

Views

Author

Jean-François Alcover, Apr 29 2016

Keywords

Examples

			0.17090961985966239214460728413311738704719072962628832355853881...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.4.2 Random mapping statistics, p. 290.

Crossrefs

Programs

  • Mathematica
    digits = 95; Ei = ExpIntegralEi; 2*NIntegrate[1 - E^(Ei[-x]/2)*(1 - Ei[-x]/2), {x, 0, 200}, WorkingPrecision -> digits + 5] // RealDigits[#, 10, digits]& // First

Formula

2*integral_{0..infinity} 1 - e^(Ei(-x)/2)*(1 - Ei(-x)/2) dx, where Ei is the exponential integral.