This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A272469 #30 Jan 08 2019 12:29:45 %S A272469 0,6,50,322,1874,10558,58716,325758,1808778,10068548,56213606, %T A272469 314785072,1767660604,9951449844,56151698716,317484868212, %U A272469 1798343124800,10203031413894 %N A272469 Numbers of n-step paths of a king moving on an n X n chessboard, starting at a corner and not visiting any cell twice. %e A272469 On an n X n chessboard, a king in a corner is allowed to have n moves. For n=2, let's name the cells A1,A2,B1,B2 with the king at A1. Two moves, without repeating cells, can be done in the following 6 different ways: {A1-A2-B1, A1-A2-B2, A1-B1-A2, A1-B1-B2, A1-B2-A2, A1-B2-B1}. So a(2)=6. %p A272469 pathCount := proc (N) %p A272469 local g1, g2, nStep, gg, nCells, nPrev, i1, i2, j1, j2, i, j, nNext; %p A272469 nCells := N^2; g1 := [[1]]; %p A272469 if N = 1 then return nops(g1) fi; #forced value for N=0 %p A272469 for nStep to N do %p A272469 g2 := []; %p A272469 for gg in g1 do %p A272469 nPrev := gg[-1]; %p A272469 i1 := `if`(floor((nPrev-1)/N) = 0, 0, -N); %p A272469 i2 := `if`(floor((nPrev-1)/N) = N-1, 0, N); %p A272469 j1 := `if`(`mod`(nPrev-1, N) = 0, 0, -1); %p A272469 j2 := `if`(`mod`(nPrev-1, N) = N-1, 0, 1); %p A272469 for i from i1 by N to i2 do %p A272469 for j from j1 to j2 do %p A272469 if i = 0 and j = 0 then next fi; %p A272469 nNext := nPrev+i+j; %p A272469 if nNext < 0 or nCells < nNext or (nNext in gg) then next fi; %p A272469 g2 := [op(g2), [op(gg), nNext]] %p A272469 end do %p A272469 end do %p A272469 end do; %p A272469 g1 := g2 %p A272469 end do; %p A272469 return nops(g1); %p A272469 end proc: %p A272469 [seq(pathCount(n), n = 1 .. 6)]; %Y A272469 Cf. A272445. %K A272469 nonn,walk,more %O A272469 1,2 %A A272469 _César Eliud Lozada_, Apr 30 2016 %E A272469 a(9)-a(16) from _Alois P. Heinz_, May 01 2016 %E A272469 a(17)-a(18) from _Bert Dobbelaere_, Jan 08 2019