cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272475 Numbers n such that 2^n-1 and 3^n-1 are not coprime.

This page as a plain text file.
%I A272475 #14 Sep 08 2022 08:46:16
%S A272475 4,6,8,10,11,12,16,18,20,22,23,24,28,30,32,33,35,36,40,42,43,44,46,48,
%T A272475 50,52,54,55,56,58,60,64,66,68,69,70,72,75,76,77,78,80,82,83,84,86,88,
%U A272475 90,92,95,96,99,100,102,104,105,106,108,110,112,114,115,116,117
%N A272475 Numbers n such that 2^n-1 and 3^n-1 are not coprime.
%C A272475 Complement of A263647.
%H A272475 Vincenzo Librandi, <a href="/A272475/b272475.txt">Table of n, a(n) for n = 1..1000</a>
%e A272475 gcd(2^4-1, 3^4-1) = gcd(15,80) = 5, so a(1) = 4.
%t A272475 Select[Range[200], ! GCD[2^# - 1, 3^# - 1] == 1 &]
%o A272475 (Magma) [n: n in [1..200] | not Gcd(2^n-1, 3^n-1) eq 1];
%o A272475 (PARI) isok(n) = gcd(2^n-1, 3^n-1) != 1; \\ _Michel Marcus_, May 01 2016
%Y A272475 Cf. A263647.
%K A272475 nonn
%O A272475 1,1
%A A272475 _Vincenzo Librandi_, May 01 2016