This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A272515 #10 Dec 11 2020 08:25:19 %S A272515 60,105,448,2016,4980,15675,61644,155155,482573,1733550,4549808, %T A272515 13890360,48104628,128949675,392009140,1322692581,3607864403, %U A272515 10929721440,36245555284,100109572875,302709337515,990788537700,2763564406113,8344789976616,27039048750600 %N A272515 Number of set partitions of [n] into three blocks with distinct sizes. %H A272515 Alois P. Heinz, <a href="/A272515/b272515.txt">Table of n, a(n) for n = 6..1000</a> %F A272515 a(n) = n! * [x^n*y^3] Product_{n>=1} (1+y*x^n/n!). %F A272515 Conjecture: a(n) ~ 3^n / 6. - _Vaclav Kotesovec_, Dec 11 2020 %p A272515 b:= proc(n, i, t) option remember; `if`(t>i or t*(t+1)/2>n %p A272515 or t*(2*i+1-t)/2<n, 0, `if`(n=0, 1, b(n,i-1,t)+ %p A272515 `if`(i>n, 0, b(n-i, i-1, t-1)*binomial(n,i)))) %p A272515 end: %p A272515 a:= n-> b(n$2, 3): %p A272515 seq(a(n), n=6..40); %t A272515 b[n_, i_, t_] := b[n, i, t] = If[t > i || t(t+1)/2 > n || t(2i+1-t)/2 < n, 0, If[n == 0, 1, b[n, i - 1, t] + If[i > n, 0, b[n - i, i - 1, t - 1]* Binomial[n, i]]]]; %t A272515 a[n_] := b[n, n, 3]; %t A272515 a /@ Range[6, 40] (* _Jean-François Alcover_, Dec 11 2020, after _Alois P. Heinz_ *) %Y A272515 Column k=3 of A131632. %K A272515 nonn %O A272515 6,1 %A A272515 _Alois P. Heinz_, May 01 2016