A272523 Numbers k such that (265*10^k + 17)/3 is prime.
2, 3, 4, 10, 35, 60, 65, 72, 87, 218, 226, 326, 365, 461, 611, 1244, 1566, 4839, 4913, 5396, 7020, 8410, 9714, 10362, 11405, 21695, 25240, 56076, 56588, 74579, 81990, 114736
Offset: 1
Examples
3 is in this sequence because (265*10^3 + 17)/3 = 88339 is prime. Initial terms and associated primes: a(1) = 2, 8839; a(2) = 3, 88339; a(3) = 4, 883339; a(4) = 10, 883333333339; a(5) = 35, 8833333333333333333333333333333333339, etc.
Links
- Makoto Kamada, Factorization of near-repdigit-related numbers.
- Makoto Kamada, Search for 883w9.
Programs
-
Mathematica
Select[Range[0, 100000], PrimeQ[(265*10^# + 17)/3] &]
-
PARI
is(n)=ispseudoprime((265*10^n + 17)/3) \\ Charles R Greathouse IV, Jun 13 2017
Extensions
a(32) from Robert Price, Mar 21 2020
Comments