A272526 Decimal expansion of s_4, a 4-dimensional Steiner ratio analog.
7, 4, 3, 9, 8, 5, 6, 1, 7, 8, 2, 8, 1, 3, 4, 0, 6, 2, 9, 9, 4, 3, 7, 9, 8, 8, 5, 9, 2, 0, 4, 1, 0, 5, 5, 2, 2, 7, 3, 7, 5, 9, 9, 4, 7, 5, 9, 6, 4, 2, 8, 3, 9, 1, 7, 0, 9, 2, 9, 6, 9, 1, 8, 5, 1, 1, 9, 8, 6, 5, 7, 6, 6, 4, 9, 8, 2, 5, 2, 3, 0, 4, 4, 9, 0, 9, 4, 4, 7, 6, 1, 2, 1, 7, 0, 9, 4, 4
Offset: 0
Examples
0.7439856178281340629943798859204105522737599475964283917092969185...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 8.6 Steiner Tree Constants, p. 505.
Links
- D. Z. Du and W. D. Smith , Disproofs of Generalized Gilbert-Pollak Conjecture on the Steiner Ratio in Three or More Dimensions, Journal of Combinatorial Theory, Series A Volume 74, Issue 1, April 1996, Pages 115-130
- Eric Weisstein's MathWorld, Steiner Tree.
- Wikipedia, Steiner Tree problem
Programs
-
Mathematica
s4 = Root[900 s^8 - 1863 s^6 + 2950 s^4 - 1511 s^2 + 164, s, 4]; RealDigits[s4, 10, 98][[1]]
Formula
Minimal polynomial is 900 s^8 - 1863 s^6 + 2950 s^4 - 1511 s^2 + 164.