A272534 Decimal expansion of the edge length of a regular 15-gon with unit circumradius.
4, 1, 5, 8, 2, 3, 3, 8, 1, 6, 3, 5, 5, 1, 8, 6, 7, 4, 2, 0, 3, 4, 8, 4, 5, 6, 8, 8, 1, 0, 2, 5, 0, 3, 3, 2, 4, 3, 3, 1, 6, 9, 5, 2, 1, 2, 5, 5, 4, 4, 7, 6, 7, 2, 8, 1, 4, 3, 6, 3, 9, 4, 7, 7, 6, 4, 7, 6, 5, 6, 5, 1, 3, 2, 8, 1, 4, 8, 7, 5, 2, 6, 0, 9, 2, 5, 7, 5, 1, 3, 4, 4, 5, 4, 5, 5, 1, 4, 6, 1, 1, 5, 7, 3, 0
Offset: 0
Examples
0.415823381635518674203484568810250332433169521255447672814363947...
References
- Julian Havil, The Irrationals, A Story of the Numbers You Can't Count On, Princeton University Press, Princeton and Oxford, 2012, pp. 69-74.
Links
- Stanislav Sykora, Table of n, a(n) for n = 0..2000
- Mauro Fiorentini, Construibili (numeri)
- Eric Weisstein's World of Mathematics, Constructible Number
- Wikipedia, Constructible number
- Wikipedia, Regular polygon
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for algebraic numbers, degree 8.
Crossrefs
Programs
-
Mathematica
RealDigits[N[2Sin[Pi/15], 100]][[1]] (* Robert Price, May 02 2016*)
-
PARI
2*sin(Pi/15)
Formula
Equals 2*sin(Pi/m) for m=15, 2*A019821.
Also equals (sqrt(3) - sqrt(15) + sqrt(10 + 2*sqrt(5)))/4.
Also equals sqrt(7 - sqrt(5) - sqrt(30 - 6*sqrt(5)))/2. This is the rewritten expression of the Havil reference on top of p. 70. - Wolfdieter Lang, Apr 29 2018
Comments