cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272551 Number of singular vector tuples for a general 4-dimensional n X n X n X n tensor.

This page as a plain text file.
%I A272551 #21 Aug 19 2018 03:23:37
%S A272551 1,24,997,51264,2940841,180296088,11559133741,765337680384,
%T A272551 51921457661905,3590122671128664,252070718210663749,
%U A272551 17922684123178825536,1287832671004683373753,93368940577497932331288,6821632357294515590873917,501741975445243527381995520,37121266623211130111114816929
%N A272551 Number of singular vector tuples for a general 4-dimensional n X n X n X n tensor.
%H A272551 Shalosh B. Ekhad and Doron Zeilberger, <a href="http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/svt.html">On the Number of Singular Vector Tuples of Hyper-Cubical Tensors</a>, 2016.
%H A272551 Shalosh B. Ekhad and Doron Zeilberger, <a href="https://arxiv.org/abs/1605.00172">On the number of Singular Vector Tuples of Hyper-Cubical Tensors</a>, arXiv preprint arXiv:1605.00172 [math.CO], 2016.
%t A272551 a[n_] := Module[{a, b, c, d, s}, s = Series[(
%t A272551   ((a + b + c)^n - d^n)*
%t A272551   ((b + c + d)^n - a^n)*
%t A272551   ((c + d + a)^n - b^n)*
%t A272551   ((d + a + b)^n - c^n))/(
%t A272551   (a + b + c - d)*
%t A272551   (b + c + d - a)*
%t A272551   (c + d + a - b)*
%t A272551   (d + a + b - c)),
%t A272551   {a, 0, n}, {b, 0, n}, {c, 0, n}, {d, 0, n}] // Normal // Expand;
%t A272551   Cases[List @@ s, k_Integer a^(n-1) b^(n-1) c^(n-1) d^(n-1)] /. (a|b|c|d) -> 1 // First
%t A272551 ];
%t A272551 Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 17}] (* _Jean-François Alcover_, Aug 19 2018, after A271905 *)
%Y A272551 See A271905 for the three-dimensional analog.
%Y A272551 Column k=4 of A284308.
%K A272551 nonn
%O A272551 1,2
%A A272551 _Doron Zeilberger_, May 02 2016