cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272575 Perfect powers that are the sum of two Fibonacci numbers.

This page as a plain text file.
%I A272575 #14 May 04 2016 20:53:25
%S A272575 1,4,8,9,16,36,144,1000,1600,14930496
%N A272575 Perfect powers that are the sum of two Fibonacci numbers.
%C A272575 Intersection of A001597 and A084176.
%C A272575 Listed terms are 1, 2^2, 2^3, 3^2, 2^4, 6^2, 12^2, 10^3, 40^2, 3864^2.
%C A272575 First five terms are also members of A000961.
%C A272575 Conjecture: there are no more terms in this sequence. Any remaining terms must have over 10000 digits. - _Charles R Greathouse IV_, May 04 2016
%e A272575 8 is a term because 2^3 = 3 + 5.
%t A272575 Select[Range[10^4], Function[k, Or[k == 1, GCD @@ Map[Last, FactorInteger@ k] > 1] && Total@ Map[Times @@ Boole@ Map[MemberQ[s, #] &, #] &, Transpose@ {#, k - #} &@ Range[0, Floor[k/2]]] > 0]] (* _Michael De Vlieger_, May 03 2016 *)
%o A272575 (PARI) list(lim)=my(upper=log(lim*sqrt(5))\log((1+sqrt(5))/2)+1, t, tt, v=List([1])); if(fibonacci(t)>lim, t--); for(i=3, upper, t=fibonacci(i); for(j=2, i-1, tt=t+fibonacci(j); if(tt>lim, break); if(ispower(tt), listput(v, tt)))); Set(v) \\ _Charles R Greathouse IV_, May 03 2016
%Y A272575 Cf. A000045, A001597, A084176, A111378.
%K A272575 nonn
%O A272575 1,2
%A A272575 _Altug Alkan_, May 03 2016