This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A272596 #14 Dec 22 2021 11:44:57 %S A272596 9240,10920,14280,15960,17160,18480,19320,21840,22440,24024,24360, %T A272596 25080,26040,26520,27720,28560,29640,30360,31080,31416,31920,32760, %U A272596 34320,34440,35112,35880,36120,36960,37128,38280,38640,38760,39480,40040,40920,41496,42504,42840,43680,44520,44880,45240,46200 %N A272596 Numbers n such that the multiplicative group modulo n is the direct product of 6 cyclic groups. %C A272596 Numbers n such that A046072(n) = 6. %t A272596 A046072[n_] := Which[n == 1 || n == 2, 1, %t A272596 OddQ[n], PrimeNu[n], %t A272596 EvenQ[n] && !Divisible[n, 4], PrimeNu[n] - 1, %t A272596 Divisible[n, 4] && !Divisible[n, 8], PrimeNu[n], %t A272596 Divisible[n, 8], PrimeNu[n] + 1]; %t A272596 Select[Range[5*10^4], A046072[#] == 6&] (* _Jean-François Alcover_, Dec 22 2021, after _Geoffrey Critzer_ in A046072 *) %o A272596 (PARI) for(n=1, 10^5, my(t=#(znstar(n)[2])); if(t==6, print1(n, ", "))); %Y A272596 Direct product of k groups: A033948 (k=1), A272592 (k=2), A272593 (k=3), A272594 (k=4), A272595 (k=5), A272597 (k=7), A272598 (k=8), A272599 (k=9). %K A272596 nonn %O A272596 1,1 %A A272596 _Joerg Arndt_, May 05 2016