This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A272597 #13 Dec 22 2021 11:44:51 %S A272597 120120,157080,175560,185640,207480,212520,240240,251160,267960, %T A272597 271320,286440,291720,314160,316680,326040,328440,338520,341880, %U A272597 351120,360360,367080,371280,378840,394680,397320,404040,408408,414120,414960,425040,426360,434280,442680,447720,456456,462840,469560,471240 %N A272597 Numbers n such that the multiplicative group modulo n is the direct product of 7 cyclic groups. %C A272597 Numbers n such that A046072(n) = 7. %t A272597 A046072[n_] := Which[n == 1 || n == 2, 1, %t A272597 OddQ[n], PrimeNu[n], %t A272597 EvenQ[n] && !Divisible[n, 4], PrimeNu[n] - 1, %t A272597 Divisible[n, 4] && !Divisible[n, 8], PrimeNu[n], %t A272597 Divisible[n, 8], PrimeNu[n] + 1]; %t A272597 Select[Range[5*10^5], A046072[#] == 7&] (* _Jean-François Alcover_, Dec 22 2021, after _Geoffrey Critzer_ in A046072 *) %o A272597 (PARI) for(n=1, 10^6, my(t=#(znstar(n)[2])); if(t==7, print1(n, ", "))); %Y A272597 Direct product of k groups: A033948 (k=1), A272592 (k=2), A272593 (k=3), A272594 (k=4), A272595 (k=5), A272596 (k=6), A272598 (k=8), A272599 (k=9). %K A272597 nonn %O A272597 1,1 %A A272597 _Joerg Arndt_, May 05 2016