This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A272598 #13 Dec 22 2021 11:44:46 %S A272598 2042040,2282280,2762760,2984520,3483480,3527160,3612840,3723720, %T A272598 4037880,4084080,4269720,4444440,4555320,4564560,4772040,4869480, %U A272598 4924920,5091240,5165160,5383560,5442360,5525520,5542680,5645640,5754840,5811960,5969040,6016920,6126120,6163080,6240360,6366360,6431880,6440280 %N A272598 Numbers n such that the multiplicative group modulo n is the direct product of 8 cyclic groups. %C A272598 Numbers n such that A046072(n) = 8. %t A272598 A046072[n_] := Which[n == 1 || n == 2, 1, %t A272598 OddQ[n], PrimeNu[n], %t A272598 EvenQ[n] && !Divisible[n, 4], PrimeNu[n] - 1, %t A272598 Divisible[n, 4] && !Divisible[n, 8], PrimeNu[n], %t A272598 Divisible[n, 8], PrimeNu[n] + 1]; %t A272598 Select[Range[120, 120*10^5, 120], A046072[#] == 8&] (* _Jean-François Alcover_, Dec 22 2021, after _Geoffrey Critzer_ in A046072 *) %o A272598 (PARI) for(n=1, 10^7, my(t=#(znstar(n)[2])); if(t==8, print1(n, ", "))); %Y A272598 Direct product of k groups: A033948 (k=1), A272592 (k=2), A272593 (k=3), A272594 (k=4), A272595 (k=5), A272596 (k=6), A272597 (k=7), A272599 (k=9). %K A272598 nonn %O A272598 1,1 %A A272598 _Joerg Arndt_, May 05 2016