A272632 Non-Fibonacci numbers that are both a sum and a difference of two Fibonacci numbers.
4, 6, 7, 10, 11, 16, 18, 26, 29, 42, 47, 68, 76, 110, 123, 178, 199, 288, 322, 466, 521, 754, 843, 1220, 1364, 1974, 2207, 3194, 3571, 5168, 5778, 8362, 9349, 13530, 15127, 21892, 24476, 35422, 39603, 57314, 64079, 92736, 103682, 150050, 167761, 242786
Offset: 1
Examples
6 is a term because 6 = Fibonacci(1) + Fibonacci(5) = Fibonacci(6) - Fibonacci(3). 16 is a term because 16 = Fibonacci(6) + Fibonacci(6) = Fibonacci(8) - Fibonacci(5). 167761 is a term because it is not a Fibonacci number and 167761 = Fibonacci(24) + Fibonacci(26) = 46368 + 121393 and Fibonacci(24) + Fibonacci(26) = Fibonacci(27) - Fibonacci(23) by definition.
Links
- Index entries for linear recurrences with constant coefficients, signature (0,1,0,1).
Programs
-
Mathematica
mxf=30; {s,d} = Reap[Do[{a,b} = Fibonacci@{i,j}; Sow[a+b, 0]; Sow[a-b, 1], {i, mxf}, {j, i}]][[2]]; Complement[ Intersection[s, d], Fibonacci@ Range@ mxf] (* Giovanni Resta, May 04 2016 *)
Formula
a(2*n-1) = fibonacci(n+1) + fibonacci(n+3) =A000204(n+2) for n >= 1.
a(2*n) = 2*fibonacci(n+3) = A078642(n+1) for n >= 1.
G.f.: -x*(4+6*x+3*x^2+4*x^3)/(-1+x^2+x^4) . - R. J. Mathar, Jan 13 2023
a(n) = a(n-2) + a(n-4) for n > 4. - Christian Krause, Oct 31 2023
Comments