This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A272653 #19 Feb 26 2023 19:46:23 %S A272653 3,9,10,15,33,34,36,43,45,46,51,53,54,63,129,130,132,136,147,149,150, %T A272653 153,154,156,163,165,166,169,170,172,183,187,189,190,195,197,198,201, %U A272653 202,204,215,219,221,222,231,235,237,238,255,513,514,516,520,528,547 %N A272653 Numbers whose binary expansion is an abelian square. %C A272653 Numbers whose binary expansion has the form uv, where u begins with 1 and v is some permutation of u. %C A272653 Could also be read as a table where row n gives the A178244(n) terms corresponding to u = (n written in binary), cf. Example section. - _M. F. Hasler_, Feb 23 2023 %H A272653 Chai Wah Wu, <a href="/A272653/b272653.txt">Table of n, a(n) for n = 1..10000</a> %e A272653 34_10 = 100010_2 is a member, since v = 010 is a permutation of u = 100. %e A272653 From _M. F. Hasler_, Feb 23 2023: (Start) %e A272653 Grouping together in rows terms with the same u = binary(n): %e A272653 n | u | permutations v of u | decimal values of concat(u,v) read in binary %e A272653 1 | 1 | 1 | 3 %e A272653 2 | 10 | 01, 10 | 9, 10 %e A272653 3 | 11 | 11 | 15 %e A272653 4 | 100 | 001, 010, 100 | 33, 34, 36 %e A272653 5 | 101 | 011, 101, 110 | 43, 45, 46 %e A272653 6 | 110 | idem | 51, 53, 54 %e A272653 7 | 111 | 111 | 63 %e A272653 8 | 1000 | 0001,0010,0100,1000 | 129, 130, 132, 136 %e A272653 9 | 1001 | 0011, 0101, 0110, | 147, 149, 150, %e A272653 | | 1001, 1010, 1100 | 153, 154, 156 %e A272653 ...| ... | ... | ... %e A272653 (End) %o A272653 (Python) %o A272653 from sympy.utilities.iterables import multiset_permutations %o A272653 A272653_list = [int(b+''.join(s),2) for b in (bin(n)[2:] for n in range(1,100)) for s in multiset_permutations(sorted(b))] # _Chai Wah Wu_, May 15 2016 %o A272653 (PARI) A272653_row(n, L=List())={forperm(vecsort(binary(n)), b, listput(L, n<<#b+fromdigits(Vec(b),2)));Vec(L)} \\ _M. F. Hasler_, Feb 23 2023 %Y A272653 Cf. A272654 (the binary expansions), A272655 (base 10 analog). %K A272653 nonn,base %O A272653 1,1 %A A272653 _N. J. A. Sloane_, May 14 2016 %E A272653 More terms from _Chai Wah Wu_, May 15 2016