This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A272661 #28 Sep 30 2023 18:19:39 %S A272661 1,2,6,32,333,8927,758878 %N A272661 Number of distinct characteristic polynomials of n X n matrices with elements {0, 1}. %D A272661 Robert M. Corless, Bohemian Eigenvalues, Talk Presented at Computational Discovery in Mathematics (ACMES 2), University of Western Ontario, May 12 2016. (Talk based on joint work with Steven E. Thornton, Sonia Gupta, Jonathan Brino-Tarasoff, Venkat Balasubramanian.) %H A272661 Robert M. Corless, Steven E. Thornton, Sonia Gupta, Jonathan Brino-Tarasoff, Venkat Balasubramanian, <a href="https://s3.amazonaws.com/stevenethornton.github/BHIME+Slides.pdf">Slides from "Bohemian Eigenvalues" talk</a>. %H A272661 Robert Israel, <a href="/A272661/a272661.txt">Examples for n=5</a> %o A272661 (MATLAB) %o A272661 function count = A272661(N) %o A272661 C = zeros(0,N); %o A272661 count = 0; %o A272661 V = zeros(1,N); %o A272661 L = -floor(N/2) + [0:N-1]; %o A272661 for x = 0:2^(N^2)-1; %o A272661 r = dec2bin(x+2^(N^2))-'0'; %o A272661 A = reshape(r(2:end),N,N); %o A272661 rowcounts = sum(A,2); %o A272661 colcounts = sum(A,1); %o A272661 if ~issorted(rowcounts)|| rowcounts(N) < max(colcounts) %o A272661 continue %o A272661 end %o A272661 for i = 1:N %o A272661 V(i) = round(det(A - L(i)*eye(N))); %o A272661 end %o A272661 if ~ismember(V, C, 'rows') %o A272661 count = count+1; %o A272661 C(count,:) = V; %o A272661 end %o A272661 end %o A272661 end % _Robert Israel_, Aug 18 2016 %o A272661 (Python) %o A272661 from itertools import product %o A272661 from sympy import Matrix %o A272661 def A272661(n): return len({tuple(Matrix(n,n,p).charpoly().as_list()) for p in product((0,1),repeat=n**2)}) if n else 1 # _Chai Wah Wu_, Sep 30 2023 %Y A272661 Six classes of matrices mentioned in Rob Corless's talk: A272658, A272659, A272660, A272661, A272662, A272663. %K A272661 nonn,more %O A272661 0,2 %A A272661 _N. J. A. Sloane_, May 15 2016 %E A272661 a(5) from _Robert Israel_, Aug 18 2016 %E A272661 a(6) from _Steven E. Thornton_, Mar 09 2019 %E A272661 a(0)=1 prepended by _Alois P. Heinz_, Sep 28 2023