cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272665 Imaginary parts of b(n) sequence used to define A143056.

This page as a plain text file.
%I A272665 #19 Oct 06 2016 02:04:03
%S A272665 0,0,1,2,4,6,7,4,-8,-36,-87,-162,-244,-278,-145,360,1520,3608,6641,
%T A272665 9882,11028,5166,-16073,-64084,-149528,-272076,-399911,-436682,
%U A272665 -179684,712530,2698335,6192720,11140064,16170928,17258081,6043314,-31395292,-113477674
%N A272665 Imaginary parts of b(n) sequence used to define A143056.
%H A272665 Colin Barker, <a href="/A272665/b272665.txt">Table of n, a(n) for n = 1..1000</a>
%H A272665 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,-2,-1).
%F A272665 From _Colin Barker_, May 17 2016: (Start)
%F A272665 a(n) = 2*a(n-1)-2*a(n-3)-a(n-4) for n>4.
%F A272665 G.f.: x^3 / (1-2*x+2*x^3+x^4).
%F A272665 (End)
%F A272665 a(n) = (sin((n-1)*theta)*(tau^(n-1) + (-tau)^(1-n))*phi^(3/2) - cos((n-1)*theta)*(tau^(n-1) - (-tau)^(1-n))/phi^(3/2))/(2*sqrt(5)), where phi=(1+sqrt(5))/2, tau=sqrt(phi+sqrt(phi)), theta=arctan(phi^(-3/2)). - _Vladimir Reshetnikov_, Oct 04 2016
%t A272665 Im[Fibonacci[Range[0, 20], 1 + I]] (* _Vladimir Reshetnikov_, Oct 04 2016 *)
%t A272665 LinearRecurrence[{2, 0, -2, -1}, {0, 0, 1, 2}, 36] (* _Robert G. Wilson v_, Oct 05 2016 *)
%o A272665 (PARI) concat(vector(2), Vec(x^3/(1-2*x+2*x^3+x^4) + O(x^50))) \\ _Colin Barker_, May 17 2016
%Y A272665 Cf. A143056.
%K A272665 sign,easy
%O A272665 1,4
%A A272665 _N. J. A. Sloane_, May 17 2016