This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A272710 #11 Feb 16 2025 08:33:34 %S A272710 1705829,1313701,991127,729173,519643,355049,228581,134077,65993, %T A272710 19373,10181,26539,33073,32687,27847,20611,12659,5323,383,3733,4259, %U A272710 1721,3923,12547,23887,37571,53149,70123,87977,106207,124351,142019,158923,174907,189977 %N A272710 Primes of the form abs((1/4)*(n^5 - 133n^4 + 6729n^3 - 158379n^2 + 1720294n - 6823316)) in order of increasing nonnegative n. %H A272710 Robert Price, <a href="/A272710/b272710.txt">Table of n, a(n) for n = 1..2328</a> %H A272710 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Prime-GeneratingPolynomial.html">Prime-Generating Polynomials</a> %e A272710 519643 is in this sequence since abs(1/4 (n^5 - 133n^4 + 6729n^3 - 158379n^2 + 1720294n - 6823316)) = abs((1024 - 34048 + 430656 - 2534064 + 6881176 - 6823316)/4) = 519643 is prime. %t A272710 n = Range[0, 100]; Select[1/4 (n^5 - 133n^4 + 6729n^3 - 158379n^2 + 1720294n - 6823316), PrimeQ[#] &] %Y A272710 Cf. A050268, A050267, A005846, A007641, A007635, A048988, A050265, A050266. %Y A272710 Cf. A271980, A272030, A272074, A272075, A272159, A271143, A272284, A272302, A272437, A272443, A268200, A272554, A247163. %K A272710 nonn %O A272710 1,1 %A A272710 _Robert Price_, May 04 2016