cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272712 Perfect powers that are the difference of two nonnegative Fibonacci numbers.

This page as a plain text file.
%I A272712 #30 Nov 16 2023 15:56:46
%S A272712 1,4,8,16,32,81,144,225,343,576
%N A272712 Perfect powers that are the difference of two nonnegative Fibonacci numbers.
%C A272712 Listed 10 terms are 1, 2^2, 2^3, 2^4, 2^5, 3^4, 12^2, 15^2, 3^5, 24^2.
%C A272712 1, 4, 8, 16, 32, 81, 343 are also members of A000961.
%C A272712 1, 4, 8, 16, 144 are in the intersection of this sequence and A272575.
%C A272712 Is this sequence finite?
%C A272712 If a(11) exists, it must be larger than 10^2000. - _Giovanni Resta_, May 25 2016
%e A272712 32 is a term because 32 = 2^5 = 34 - 2 = Fibonacci(9) - Fibonacci(3).
%p A272712 isA272712 := proc(n)
%p A272712     isA001597(n) and isA007298(n) ; #uses code in A001597 and A007298
%p A272712 end proc:
%p A272712 for n from 1 do
%p A272712     if isA272712(n) then
%p A272712         printf("%d\n",n) ;
%p A272712     end if;
%p A272712 end do: # _R. J. Mathar_, May 25 2016
%t A272712 isA001597[n_] := n == 1 || GCD @@ FactorInteger[n][[All, 2]] > 1;
%t A272712 isA007298[n_] := Module[{i, Fi, j, Fj}, For[i = 0, True, i++, Fi = Fibonacci[i]; For[j = i, True, j++, Fj = Fibonacci[j]; Which[Fj - Fi == n, Return@True, Fj - Fi > n, Break[]]]; Fj := Fibonacci[i + 1]; If[Fj - Fi > n, Return@False]]];
%t A272712 Select[Range[1000], isA001597[#] && isA007298[#]&] (* _Jean-François Alcover_, Nov 16 2023, after _R. J. Mathar_ in A007298 *)
%Y A272712 Cf. A000961, A007298, A001597, A219114, A272575.
%K A272712 nonn,more
%O A272712 1,2
%A A272712 _Altug Alkan_, May 05 2016