This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A272743 #13 Feb 16 2025 08:33:34 %S A272743 1,5,17,69,277,1109,4437,17749,70997,283989,1135957,4543829,18175317, %T A272743 72701269,290805077,1163220309 %N A272743 Number of active (ON, black) cells at stage 2^n-1 of the two-dimensional cellular automaton defined by "Rule 526", based on the 5-celled von Neumann neighborhood. %C A272743 Initialized with a single black (ON) cell at stage zero. %D A272743 S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170. %H A272743 N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015 %H A272743 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a> %H A272743 S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a> %H A272743 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a> %H A272743 <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a> %H A272743 <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a> %F A272743 Conjecture: a(n) = (13*4^(n-1) - 1)/3, n>1. - _Lars Blomberg_, Jul 08 2016 %F A272743 Conjectures from _Colin Barker_, Jul 08 2016: (Start) %F A272743 a(n) = 5*a(n-1)-4*a(n-2) for n>4. %F A272743 G.f.: (1-4*x^2+4*x^3) / ((1-x)*(1-4*x)). %F A272743 (End) %t A272743 CAStep[rule_,a_]:=Map[rule[[10-#]]&,ListConvolve[{{0,2,0},{2,1,2},{0,2,0}},a,2],{2}]; %t A272743 code=526; stages=128; %t A272743 rule=IntegerDigits[code,2,10]; %t A272743 g=2*stages+1; (* Maximum size of grid *) %t A272743 a=PadLeft[{{1}},{g,g},0,Floor[{g,g}/2]]; (* Initial ON cell on grid *) %t A272743 ca=a; %t A272743 ca=Table[ca=CAStep[rule,ca],{n,1,stages+1}]; %t A272743 PrependTo[ca,a]; %t A272743 (* Trim full grid to reflect growth by one cell at each stage *) %t A272743 k=(Length[ca[[1]]]+1)/2; %t A272743 ca=Table[Table[Part[ca[[n]][[j]],Range[k+1-n,k-1+n]],{j,k+1-n,k-1+n}],{n,1,k}]; %t A272743 on=Map[Function[Apply[Plus,Flatten[#1]]],ca] (* Count ON cells at each stage *) %t A272743 Part[on,2^Range[0,Log[2,stages]]] (* Extract relevant terms *) %Y A272743 Cf. A272742. %K A272743 nonn,more %O A272743 0,2 %A A272743 _Robert Price_, May 05 2016 %E A272743 a(8)-a(15) from _Lars Blomberg_, Jul 08 2016