This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A272763 #18 Jan 05 2019 18:33:29 %S A272763 1,8,56,368,2336,14576,89928,550504,3349864,20290360,122445504, %T A272763 736685008,4421048016,26475370088,158257613848,944493430152, %U A272763 5628996811904 %N A272763 Number of n-step self-avoiding walks on the square lattice with diagonals allowed (Moore neighborhood). %C A272763 Moore neighborhood : %C A272763 o o o %C A272763 o x o %C A272763 o o o %C A272763 Von Neumann neighborhood (A001411): %C A272763 o %C A272763 o x o %C A272763 o %C A272763 Note that the path avoids already visited lattice points, but can intersect itself (two diagonal steps). A nonintersecting version is A272773. %C A272763 The Moore neighborhood characterizes king tours. # _Rainer Rosenthal_, Jan 05 2019 %p A272763 # For starting point stp and list Ldir of n directions (1..8) %p A272763 # construct the points of the whole path and count them. %p A272763 # If there are n+1 then the path is self-avoiding. %p A272763 isSelfAvoiding := proc(Ldir) local Delta, dir, ep, path; %p A272763 Delta := [[1,0],[1,1],[0,1],[-1,1],[-1,0],[-1,-1],[0,-1],[1,-1]]; %p A272763 ep := [0,0]; path := {ep}; %p A272763 for dir in Ldir do %p A272763 ep := ep + Delta[dir]; %p A272763 path := {op(path), ep}; %p A272763 od; %p A272763 return evalb(nops(path)=nops(Ldir)+1); %p A272763 end: %p A272763 # Count only king tours which are self-avoiding %p A272763 A272763 := proc(n) local count, T, p; %p A272763 count := 0: %p A272763 T := combinat[cartprod]([seq([$1..8], j=1..n)]): %p A272763 while not T[finished] do %p A272763 p := T[nextvalue](); %p A272763 if isSelfAvoiding(p) then count := count+1; fi; %p A272763 od: %p A272763 return count; %p A272763 end: # _Rainer Rosenthal_, Jan 05 2019 %t A272763 mo=Most@Tuples[{-1,1,0},2]; a[0]=1; a[tg_, p_: {{0, 0}}] := Block[{e, mv = Complement[Last[p] + # & /@ mo, p]}, If[tg == 1, Length@mv, Sum[a[tg - 1, Append[p, e]], {e, mv}]]]; a /@ Range[0, 7] (* _Giovanni Resta_, May 06 2016 *) %Y A272763 Cf. A001411, A272773, A300665. %K A272763 nonn,walk,more %O A272763 0,2 %A A272763 _Francois Alcover_, May 05 2016 %E A272763 a(13)-a(16) from _Giovanni Resta_, May 06 2016