cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272772 Number of prime divisors of (A002997(n) - 2) counted with multiplicity.

Original entry on oeis.org

2, 1, 2, 2, 1, 1, 2, 2, 2, 1, 1, 4, 1, 1, 3, 2, 3, 2, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 3, 2, 1, 3, 2, 2, 1, 3, 1, 2, 3, 3, 4, 3, 2, 1, 2, 3, 2, 2, 2, 3, 3, 2, 2, 4, 1, 3, 3, 2, 4, 3, 2, 2, 2, 1, 2, 2, 3, 3, 2, 2, 2, 2, 4, 2, 1, 2, 2, 4, 2, 2, 2, 1, 3, 3, 2, 2, 2, 2, 3, 3, 2, 2, 3, 2, 1, 2, 2, 2, 4, 2, 2, 2, 4, 2
Offset: 1

Views

Author

Altug Alkan, May 06 2016

Keywords

Comments

62756641 is the first Carmichael number k such that k-2 has 5 prime divisors (counted with multiplicity).
What is the average value function of a(n) when n goes to infinity?
If these number act like typical numbers of their size, then standard heuristics suggest an average value of log log n since there are between x^(1/3) and x Carmichael numbers up to x for large enough x. - Charles R Greathouse IV, May 09 2016

Examples

			a(1) = 2 because 561 - 2 = 559 has 2 prime divisors that are 13 and 43.
		

Crossrefs

Programs

  • PARI
    isA002997(n)=my(f); bittest(n, 0) && !for(i=1, #f=factor(n)~, (f[2, i]==1 && n%(f[1, i]-1)==1)||return) && #f>1
    for(n=561, 1e7, if(isA002997(n), print1(bigomega(n-2), ", ")));

Formula

a(n) = A001222(A002997(n)-2).