A272799 Numbers k such that 2*k - 1 and 2*k + 1 are squarefree.
1, 2, 3, 6, 7, 8, 9, 10, 11, 15, 16, 17, 18, 19, 20, 21, 26, 27, 28, 29, 30, 33, 34, 35, 36, 39, 42, 43, 44, 45, 46, 47, 48, 51, 52, 53, 54, 55, 56, 57, 64, 65, 66, 69, 70, 71, 72, 75, 78, 79, 80, 81, 82, 83, 89, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 105, 106, 107, 108, 109, 110
Offset: 1
Examples
a(1) = 1 because 2*1 - 1 = 1 is squarefree and 2*1 + 1 = 3 is squarefree.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[n: n in [1..110] | IsSquarefree(2*n-1) and IsSquarefree(2*n+1)];
-
Maple
Res:= NULL: count:= 0: state:= 1; for n from 1 while count < 100 do if numtheory:-issqrfree(2*n+1) then if state = 1 then Res:= Res, n; count:= count+1; else state:= 1; fi else state:= 0; fi od: Res; # Robert Israel, Apr 15 2019
-
Mathematica
Select[Range[12^4], And[Or[# == 1, GCD @@ FactorInteger[#][[All, 2]] > 1], SquareFreeQ[# - 1], SquareFreeQ[# + 1]] &] (* Michael De Vlieger, May 08 2016 *)
-
PARI
is(n)=issquarefree(2*n-1) && issquarefree(2*n+1) \\ Charles R Greathouse IV, May 15 2016
-
Python
from itertools import count, islice from sympy import factorint def A272799_gen(startvalue=1): # generator of terms >= startvalue return filter(lambda k:max(factorint((k<<1)-1).values(),default=1)==1 and max(factorint((k<<1)+1).values())==1, count(max(startvalue,1))) A272799_list = list(islice(A272799_gen(),20)) # Chai Wah Wu, Apr 24 2024
Formula
a(n) = (A069977(n)+1)/2. - Charles R Greathouse IV, May 15 2016
Comments