cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272799 Numbers k such that 2*k - 1 and 2*k + 1 are squarefree.

Original entry on oeis.org

1, 2, 3, 6, 7, 8, 9, 10, 11, 15, 16, 17, 18, 19, 20, 21, 26, 27, 28, 29, 30, 33, 34, 35, 36, 39, 42, 43, 44, 45, 46, 47, 48, 51, 52, 53, 54, 55, 56, 57, 64, 65, 66, 69, 70, 71, 72, 75, 78, 79, 80, 81, 82, 83, 89, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 105, 106, 107, 108, 109, 110
Offset: 1

Views

Author

Juri-Stepan Gerasimov, May 06 2016

Keywords

Comments

The asymptotic density of this sequence is 2 * Product_{p prime} (1 - 2/p^2) = 2 * A065474 = 0.645268... . - Amiram Eldar, Feb 10 2021

Examples

			a(1) = 1 because 2*1 - 1 = 1 is squarefree and 2*1 + 1 = 3 is squarefree.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..110] | IsSquarefree(2*n-1) and IsSquarefree(2*n+1)];
    
  • Maple
    Res:=  NULL: count:= 0: state:= 1;
    for n from 1 while count < 100 do
      if numtheory:-issqrfree(2*n+1) then
        if state = 1 then Res:= Res, n; count:= count+1;
        else
          state:= 1;
        fi
      else
        state:= 0;
      fi
    od:
    Res; # Robert Israel, Apr 15 2019
  • Mathematica
    Select[Range[12^4], And[Or[# == 1, GCD @@ FactorInteger[#][[All, 2]] > 1], SquareFreeQ[# - 1], SquareFreeQ[# + 1]] &] (* Michael De Vlieger, May 08 2016 *)
  • PARI
    is(n)=issquarefree(2*n-1) && issquarefree(2*n+1) \\ Charles R Greathouse IV, May 15 2016
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A272799_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda k:max(factorint((k<<1)-1).values(),default=1)==1 and max(factorint((k<<1)+1).values())==1, count(max(startvalue,1)))
    A272799_list = list(islice(A272799_gen(),20)) # Chai Wah Wu, Apr 24 2024

Formula

a(n) = (A069977(n)+1)/2. - Charles R Greathouse IV, May 15 2016